Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 9: 798, 2018.
Article in English | MEDLINE | ID: mdl-29977248

ABSTRACT

Grape accumulates numerous polyphenols with abundant health benefit and organoleptic properties that in planta act as key components of the plant defense system against diseases. Considerable advances have been made in the chemical characterization of wine metabolites particularly volatile and polyphenolic compounds. However, the metabotyping (metabolite-phenotype characterization) of grape varieties, from polyphenolic-rich vineyard by-product is unprecedented. As this composition might result from the complex interaction between genotype, environment and viticultural practices, a field experiment was setting up with uniform pedo-climatic factors and viticultural practices of growing vines to favor the genetic determinism of polyphenol expression. As a result, UPLC-MS-based targeted metabolomic analyses of grape stems from 8 Vitis vinifera L. cultivars allowed the determination of 42 polyphenols related to phenolic acids, flavonoids, procyanidins, and stilbenoids as resveratrol oligomers (degree of oligomerization 1-4). Using a partial least-square discriminant analysis approach, grape stem chemical profiles were discriminated according to their genotypic origin showing that polyphenol profile express a varietal signature. Furthermore, hierarchical clustering highlights various degree of polyphenol similarity between grape varieties that were in agreement with the genetic distance using clustering analyses of 22 microsatellite DNA markers. Metabolite correlation network suggested that several polyphenol subclasses were differently controlled. The present polyphenol metabotyping approach coupled to multivariate statistical analyses might assist grape selection programs to improve metabolites with both health-benefit potential and plant defense traits.

2.
Food Chem ; 240: 1022-1027, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28946218

ABSTRACT

Grape canes represent a promising source of bioactive phytochemicals. However the stabilization of the raw material after pruning remains challenging. We recently reported the induction of stilbenoid metabolism after winter pruning including a strong accumulation of E-resveratrol and E-piceatannol during the first six weeks of storage. In the present study, the effect of mechanical wounding on freshly-pruned canes was tested to increase the induction of stilbenoid metabolism. Cutting the grape canes in short segments immediately after pruning triggered a transient expression of phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) genes, followed by a rapid accumulation of E-resveratrol and E-piceatannol. The degree of stilbenoid induction was related to the intensity of mechanical wounding. Data suggest that a global defense response is triggered involving jasmonate signaling, PR proteins and stilbenoid metabolism. Mechanical wounding of freshly-pruned canes drastically shortens the time required to reach maximal stilbenoid accumulation from 6 to 2weeks.


Subject(s)
Vitis , Resveratrol , Stilbenes , Stress, Mechanical
3.
J Agric Food Chem ; 63(38): 8472-7, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26373576

ABSTRACT

Grape canes are byproducts of viticulture containing valuable bioactive stilbenoids including monomers and oligomers of E-resveratrol. Although effective contents in stilbenoids are known to be highly variable, the determining factors influencing this composition remain poorly understood. As stilbenoids are locally induced defense compounds in response to phytopathogens, this study assessed the impact of downy mildew infection during the growing season on the stilbenoid composition of winter-harvested grape canes. The spatial distribution between pith, conducting tissues, and cortex of E-piceatannol, E-resveratrol, E-ε-viniferin, ampelopsin A, E-miyabenol C, Z/E-vitisin B, hopeaphenol, and isohopeaphenol in grape canes from infected vineyards was strongly altered. In conducting tissues, representing the main site of stilbenoid accumulation, E-ε-viniferin content was higher and E-resveratrol content was lower. These findings suppose that the health status in vineyards could modify the composition of stilbenoids in winter-harvested grape canes and subsequently the potential biological properties of the valuable extracts.


Subject(s)
Plant Diseases/microbiology , Plant Extracts/chemistry , Stilbenes/chemistry , Vitis/chemistry , Plant Extracts/metabolism , Seasons , Stilbenes/metabolism , Vitis/metabolism , Vitis/microbiology
4.
BMC Genomics ; 16: 619, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26285573

ABSTRACT

BACKGROUND: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. RESULTS: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise estimation of abundance of SLS and T16H isoforms, similar to qPCR measurements. CONCLUSIONS: The C. roseus consensus transcriptome can now be used for characterization of new genes of the MIA pathway. Furthermore, additional isoforms of genes encoding distinct MIA biosynthetic enzymes isoforms could be predicted suggesting the existence of a higher level of complexity in the synthesis of MIA, raising the question of the evolutionary events behind what seems like redundancy.


Subject(s)
Catharanthus/genetics , Cytochrome P-450 Enzyme System/genetics , Gene Expression Profiling/methods , Iridoid Glucosides/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Alternative Splicing , Catharanthus/enzymology , Cytochrome P-450 Enzyme System/metabolism , Databases, Genetic , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/analysis , RNA, Plant/analysis
5.
J Agric Food Chem ; 63(5): 1631-8, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25598452

ABSTRACT

Grape canes are vineyard waste products containing valuable phytochemicals of medicine and agriculture interest. Grape canes storage is critical for the accumulation of these bioactive compounds. In the present study, we investigated the changes in stilbenoid phytochemical composition during grape cane storage and the influence of the temperature on final concentrations. A strong increase in the concentration of the monomer E-resveratrol (approximately 40-fold) was observed during the first 6 weeks of storage at 20 °C in eight different grape varieties without any change in oligomer concentrations. The E-resveratrol accumulation was temperature-dependent with an optimal range at 15-20 °C. A 2 h heat-shock treatment aiming at protein denaturation inhibited E-resveratrol accumulation. The constitutive expression of key genes involved in the stilbene precursor biosynthesis along with an induction of stilbene synthase (STS) expression during the first weeks of storage contribute to a de novo biosynthesis of E-resveratrol in pruned wood grapes.


Subject(s)
Plant Extracts/biosynthesis , Plant Stems/chemistry , Stilbenes/metabolism , Vitis/metabolism , Waste Products/analysis , Acyltransferases/genetics , Acyltransferases/metabolism , Plant Extracts/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/metabolism , Resveratrol , Stilbenes/analysis , Temperature , Vitis/chemistry , Vitis/enzymology , Vitis/genetics
6.
J Nat Prod ; 77(7): 1658-62, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25014026

ABSTRACT

trans-Resveratrol (1a) is a phytoalexin produced by plants in response to infections by pathogens. Its potential activity against clinically relevant opportunistic fungal pathogens has previously been poorly investigated. Evaluated herein are the candidacidal activities of oligomers (2a, 3-5) of 1a purified from Vitis vinifera grape canes and several analogues (1b-1j) of 1a obtained through semisynthesis using methylation and acetylation. Moreover, trans-ε-viniferin (2a), a dimer of 1a, was also subjected to methylation (2b) and acetylation (2c) under nonselective conditions. Neither the natural oligomers of 1a (2a, 3-5) nor the derivatives of 2a were active against Candida albicans SC5314. However, the dimethoxy resveratrol derivatives 1d and 1e exhibited antifungal activity against C. albicans with minimum inhibitory concentration (MIC) values of 29-37 µg/mL and against 11 other Candida species. Compound 1e inhibited the yeast-to-hyphae morphogenetic transition of C. albicans at 14 µg/mL.


Subject(s)
Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Candida/drug effects , Stilbenes/pharmacology , Vitis/chemistry , Antifungal Agents/chemistry , Benzofurans/chemistry , Benzofurans/pharmacology , Candida albicans/drug effects , Microbial Sensitivity Tests , Molecular Structure , Resveratrol , Stereoisomerism , Stilbenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...