Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 592: 206-214, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28319708

ABSTRACT

Dairy farm manure and effluent are applied to cropland in China to provide a source of plant nutrients, but there are concerns over its effect on nitrogen (N) leaching loss and groundwater quality. To investigate the effects of land application of dairy manure and effluent on potential N leaching loss, two lysimeter trials were set up in clayey fluvo-aquic soil in a winter wheat-summer maize rotation cropping system on the North China Plain. The solid dairy manure trial included control without N fertilization (CK), inorganic N fertilizer (SNPK), and fresh (RAW) and composted (COM) dairy manure. The liquid dairy effluent trial consisted of control without N fertilization (CF), inorganic N fertilizer (ENPK), and fresh (FDE) and stored (SDE) dairy effluent. The N application rate was 225kgNha-1 for inorganic N fertilizer, dairy manure, and effluent treatments in both seasons. Annual N leaching loss (ANLL) was highest in SNPK (53.02 and 16.21kgNha-1 in 2013/2014 and 2014/2015, respectively), which were 1.65- and 2.04-fold that of COM, and 1.59- and 1.26-fold that of RAW. In the effluent trial (2014/2015), ANLL for ENPK and SDE (16.22 and 16.86kgNha-1, respectively) were significantly higher than CF and FDE (6.3 and 13.21kgNha-1, respectively). NO3- contributed the most (34-92%) to total N leaching loss among all treatments, followed by dissolved organic N (14-57%). COM showed the lowest N leaching loss due to a reduction in NO3- loss. Yield-scaled N leaching in COM (0.35kgNMg-1 silage) was significantly (P<0.05) lower than that in the other fertilization treatments. Therefore, the use of composted dairy manure should be increased and that of inorganic fertilizer decreased to reduce N leaching loss while ensuring high crop yield in the North China Plain.


Subject(s)
Fertilizers , Manure , Nitrogen/analysis , Soil/chemistry , Agriculture , China , Dairying , Zea mays
2.
J Sci Food Agric ; 96(13): 4584-93, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26909546

ABSTRACT

BACKGROUND: Intensive grazing by cattle on wet pasture can have a negative effect on soil physical quality and future pasture production. On a North Otago dairy farm in New Zealand, experimental plots were monitored for four years to assess whether preventing cow grazing of wet pastures during the milking season would improve soil structure and pasture production compared with unrestricted access to pastures. The DairyNZ Whole Farm Model was used to scale up results to a farm system level and ascertain the cost benefit of deferred grazing management. RESULTS: Soils under deferred grazing management had significantly higher total porosity, yet no significant improvement in macroporosity (values ranging between 0.112 and 0.146 m(3) m(-3) ). Annual pasture production did not differ between the control and deferred grazing treatments, averaging 17.0 ± 3.8 and 17.9 ± 4.1 t DM ha(-1) year(-1) respectively (P > 0.05). Furthermore, whole farm modelling indicated that farm operating profit was reduced by NZ$1683 ha(-1) year(-1) (four-year average) under deferred grazing management. CONCLUSION: Deferring dairy cow grazing from wet Pallic soils in North Otago was effective in improving soil structure (measured as total soil porosity), yet did not lead to a significant increase in pasture production. Whole farm modelling indicated no economic benefit of removing cows from wet soils during the milking season. © 2016 Society of Chemical Industry.


Subject(s)
Dairying/methods , Herbivory , Milk/metabolism , Models, Economic , Silage , Soil/chemistry , Water/analysis , Animal Feed/economics , Animals , Cattle , Conservation of Natural Resources/economics , Cost-Benefit Analysis , Costs and Cost Analysis , Dairying/economics , Female , Lactation , Milk/economics , New Zealand , Porosity , Seasons , Silage/economics
SELECTION OF CITATIONS
SEARCH DETAIL