Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci ; 57(7): 4481-4503, 2022.
Article in English | MEDLINE | ID: mdl-35125514

ABSTRACT

Organic pollutants have been a significant source of concern in recent years due to their facile dissemination and harmful effects. In this work, two different metal-organic frameworks (MOFs) were initially prepared by hydrothermal treatment, namely aluminum trimesate (MIL-100(Al)) and copper trimesate (HKUST-1). These materials were subsequently submitted to a post-synthetic modification step to grow titania nanoparticles on their surface. Anatase nanoparticles with sizes around 5 nm were successfully anchored on MIL-100(Al), and the concentration of TiO2 in this sample was about 68 wt.%. This is the first time that this composite (TiO2@MIL-100(Al)) is reported in the literature. It showed an improved photocatalytic activity, removing 90% of methylene blue (k app = 1.29 h-1), 55% of sodium diclofenac (k app = 0.21 h-1), and 62% of ibuprofen (k app = 0.37 h-1) after four hours of illumination with UV-A light. A significant concentration (14 µM) of reactive oxygen species (ROS) was detected for this composite. HKUST-1 showed a structural collapse during its post-synthetic modification, leading to a non-porous material and providing fewer sites for the heterogeneous nucleation of titania. This behavior led to a low concentration of rutile nanoparticles on HKUST-1 (9 wt.%). However, the obtained composite (TiO2@HKUST) also showed an improved photoactivity compared to HKUST-1, increasing the photodegradation rates evaluated for methylene blue (0.05 h-1 vs. 0.29 h-1), sodium diclofenac (negligible vs. 0.03 h-1), and ibuprofen (0.01 h-1 vs. 0.02 h-1). This work brings new insights concerning the preparation of photocatalysts by growing semiconductor nanoparticles on trimesate-based MOFs.

2.
Appl Radiat Isot ; 174: 109758, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33962117

ABSTRACT

In this work, gamma sterilization was validated, and the impact of this sterilization process on collagen/hydroxyapatite (Col/HAp) composites was investigated. It has been already recognized that the improper sterilization of healthcare products may lead to infection and mortality/morbidity issues in patients. Gamma sterilization has emerged as a promising sterilization method because it shows advantages such as low cost, a small increase in temperature of irradiated materials, and no production of toxic residues. Moreover, gamma rays can reach the products even when contained in sealed packages. The dose of gamma radiation applied in this study ranged from 17.5 to 50 kGy. The studied samples were examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential scanning calorimetry (DSC). No apparent effect of gamma radiation on HAp was observed even when doses as high as 50 kGy were applied. On the other hand, Col was greatly affected by gamma radiation, displaying cross-linking and degradation after sterilization. These structural changes may alter Col's properties, which could, in turn, impact its medical use. As a consequence, it is strongly recommended that the irradiation dose used to sterilize the Col/HAp composites shall be kept as low as possible to mitigate the structural changes induced in Col. It was noticed that a radiation dose of 17.5 kGy was sufficient to sterilize the examined samples because a sterility assurance level (SAL) below 10-6 was detected. Although dramatic structural changes were observed in Col when this dose was applied, the sterilized samples showed no toxicity to human mesenchymal stem cells. Based on these results, we established a VDMax of 17.5 kGy for Col/HAp-based healthcare products.


Subject(s)
Collagen/chemistry , Durapatite/chemistry , Gamma Rays , Sterilization/methods , Biocompatible Materials , Calorimetry, Differential Scanning , Cobalt Radioisotopes , Humans , Mesenchymal Stem Cells/radiation effects , Spectroscopy, Fourier Transform Infrared/methods
3.
Mater Sci Eng C Mater Biol Appl ; 68: 675-680, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27524067

ABSTRACT

Rotary nickel-titanium (NiTi) endodontic instruments were coated with a nanometric flexible TiO2 layer through dip-coating sol-gel. Control groups and coated samples of superelastic NiTi instruments model RaCe 25/0.06 (0.25mm tip-diameter, 6% conicity) were comparatively investigated with respect to the cutting efficiency, fatigue life, and corrosion resistance. Results showed an improvement in cutting efficiency for the coated samples and a high resistance to corrosion in NaClO. The coated instruments showed a better performance in fatigue life after corrosion.


Subject(s)
Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Nickel/chemistry , Titanium/chemistry
4.
J Biomed Mater Res B Appl Biomater ; 101(7): 1233-42, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23650043

ABSTRACT

Hydroxyapatite/ß-tricalcium phosphate (HA/ß-TCP) composite scaffolds have shown great potential for bone-tissue engineering applications. In this work, ceramic scaffold with different HA/ß-TCP compositions (pure HA, 60HA/40ß-TCP, and 20HA/80ß-TCP) were fabricated by a robotic-assisted deposition (robocasting) technique using water-based hydrogel inks. A systematic study was conducted to investigate the porosity, mechanical property, and degradation of the scaffolds. Our results indicate that, at a similar volume porosity, the mechanical strength of the sintered scaffolds increased with the decreasing rod diameter. The compressive strength of the fabricated scaffolds (porosity ≈ 25-80 vol %) varied between ∼3 and ∼50 MPa, a value equal or higher than that of human cancellous bone (2-12 MPa). Although there was a slight increase of Ca and P ions in water after 5 month, no noticeable degradation of the scaffolds in SBF or water was observed. Our findings from this work indicate that composite calcium phosphate scaffolds with customer-designed chemistry and architecture may be fabricated by a robotic-assisted deposition method.


Subject(s)
Calcium Phosphates/chemistry , Ceramics/chemistry , Durapatite/chemistry , Tissue Scaffolds/chemistry , Bone and Bones/chemistry , Compressive Strength , Humans , Robotics
5.
J Eur Ceram Soc ; 33(4): 679-688, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23439936

ABSTRACT

This paper introduces our approach to modeling the mechanical behavior of cellular ceramics, through the example of calcium phosphate scaffolds made by robocasting for bone-tissue engineering. The Weibull theory is used to deal with the scaffolds' constitutive rods statistical failure, and the Sanchez-Palencia theory of periodic homogenization is used to link the rod- and scaffold-scales. Uniaxial compression of scaffolds and three-point bending of rods were performed to calibrate and validate the model. If calibration based on rod-scale data leads to over-conservative predictions of scaffold's properties (as rods' successive failures are not taken into account), we show that, for a given rod diameter, calibration based on scaffold-scale data leads to very satisfactory predictions for a wide range of rod spacing, i.e. of scaffold porosity, as well as for different loading conditions. This work establishes the proposed model as a reliable tool for understanding and optimizing cellular ceramics' mechanical properties.

6.
J Mater Sci Mater Med ; 23(4): 921-30, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22311079

ABSTRACT

Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol-gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and ß-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2-12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 µm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol-gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances.


Subject(s)
Calcium Phosphates/metabolism , Gels , Tissue Engineering , Humans , Microscopy, Electron, Scanning , Viscosity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...