Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Type of study
Publication year range
1.
Adv Mater ; 33(39): e2101500, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34350646

ABSTRACT

Biomimetic exploration of stimuli-responsive and crack-resistant hydrogels is of great academic and practical significance, although the rational design of tough hydrogels is limited by insufficient mechanism study due to the lack of imaging techniques to "see" hydrogels at mesoscale level. A series of composite hydrogels with compartmentalized thermal response is designed by incorporating aggregation- and polarity-sensitive fluorescent probes in a poly(N-isopropylacrylamide) (PNIPAM) network grafted with poly(N,N-dimethylacrylamide) side-chains. The fluorescence technique is explored as a powerful tool to directly visualize their hydrophilicity-hydrophobicity transformation and the composition-dependent microphase separation. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, the thermoresponsive toughening is attributed to the formation of multiple noncovalent interactions and the conformational changes of PNIPAM chains. The enhanced fracture energy by crack multifurcation is related to the tearing-like disruption of weak interfaces between the separated phases.

2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782118

ABSTRACT

Tough soft materials usually show strain softening and inelastic deformation. Here, we study the molecular mechanism of abnormally large nonsoftening, quasi-linear but inelastic deformation in tough hydrogels made of hyperconnective physical network and linear polymers as molecular glues to the network. The interplay of hyperconnectivity of network and effective load transfer by molecular glues prevents stress concentration, which is revealed by an affine deformation of the network to the bulk deformation up to sample failure. The suppression of local stress concentration and strain amplification plays a key role in avoiding necking or strain softening and endows the gels with a unique large nonsoftening, quasi-linear but inelastic deformation.

3.
Macromol Rapid Commun ; 41(7): e1900653, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32068923

ABSTRACT

A novel bioinspired underwater adhesive based on the injectable aqueous solution of a graft copolymer with a thermoresponsive backbone is reported, which turns into a sticky hydrogel just below body temperature. With this topology, the collapse of the backbones upon the thermal transition leads to the formation of a percolating network of strong hydrophobic domains. Similar to pressure-sensitive adhesives (PSAs), the hydrogel goes through fibrillation and extensive energy dissipation in large deformations, giving it an edge over conventional chemical hydrogels, which are typically elastic and inherently nonsticky. This capability comes from the hydrophobic nanoscaffold, which resists large deformations to minimize its contact with water. Since hydrophobic interactions are not weakened in water, the behavior of the hydrogel is maintained in aqueous medium. Chemistry-insensitive adhesion of this hydrogel offers a major advantage over current injectable adhesives, which rely on in situ chemical crosslinking reactions with tissues.


Subject(s)
Adhesives/chemistry , Hydrogels/chemistry , Temperature , Water/chemistry , Elasticity , Hydrophobic and Hydrophilic Interactions , Solutions
4.
Polymers (Basel) ; 12(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033133

ABSTRACT

Underwater adhesion represents a huge technological challenge as the presence of water compromises the performance of most commercially available adhesives. Inspired by natural organisms, we have designed an adhesive based on complex coacervation, a liquid-liquid phase separation phenomenon. A complex coacervate adhesive is formed by mixing oppositely charged polyelectrolytes bearing pendant thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains. The material fully sets underwater due to a change in the environmental conditions, namely temperature and ionic strength. In this work, we incorporate silica nanoparticles forming a hybrid complex coacervate and investigate the resulting mechanical properties. An enhancement of the mechanical properties is observed below the PNIPAM lower critical solution temperature (LCST): this is due to the formation of PNIPAM-silica junctions, which, after setting, contribute to a moderate increase in the moduli and in the adhesive properties only when applying an ionic strength gradient. By contrast, when raising the temperature above the LCST, the mechanical properties are dominated by the association of PNIPAM chains and the nanofiller incorporation leads to an increased heterogeneity with the formation of fracture planes at the interface between areas of different concentrations of nanoparticles, promoting earlier failure of the network-an unexpected and noteworthy consequence of this hybrid system.

5.
Polymers (Basel) ; 12(1)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936092

ABSTRACT

We investigate the adsorption of pH- or temperature-responsive polymer systems by ellipsometry and neutron reflectivity. To this end, temperature-responsive poly (N-isopropylacrylamide) (PNIPAM) brushes and pH-responsive poly (acrylic acid) (PAA) brushes have been prepared using the "grafting onto" method to investigate the adsorption process of polymers and its reversibility under controlled environment. To that purpose, macromolecular brushes were designed with various chain lengths and a wide range of grafting density. Below the transition temperature (LCST), the characterization of PNIPAM brushes by neutron reflectivity shows that the swelling behavior of brushes is in good agreement with the scaling models before they collapse above the LCST. The reversible adsorption on PNIPAM brushes was carried out with linear copolymers of N-isopropylacrylamide and acrylic acid, P(NIPAM-co-AA). While these copolymers remain fully soluble in water over the whole range of temperature investigated, a quantitative adsorption driven by solvophobic interactions was shown to proceed only above the LCST of the brush and to be totally reversible upon cooling. Similarly, the pH-responsive adsorption driven by electrostatic interactions on PAA brushes was studied with copolymers of NIPAM and N,N-dimethylaminopropylmethacrylamide, P(NIPAM-co-MADAP). In this case, the adsorption of weak polycations was shown to increase with the ionization of the PAA brush with interactions mainly located in the upper part of the brush at pH 7 and more deeply adsorbed within the brush at pH 9.

6.
Chemistry ; 26(6): 1292-1297, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31559661

ABSTRACT

The regulation of the concentration of a wide range of small molecules is ubiquitous in biological systems because it enables them to adapt to the continuous changes in the environmental conditions. Herein, we report an aqueous synthetic system that provides an orchestrated, temperature and pH controlled regulation of the complexation between the cyclobis(paraquat-p-phenylene) host (BBox) and a 1,5-dialkyloxynaphthalene (DNP) guest attached to a well-defined dual responsive copolymer composed of N-isopropylacrylamide as thermoresponsive monomer and acrylic acid as pH-responsive monomer. Controlled, partial release of the BBox, enabling control over its concentration, is based on the tunable partial collapse of the copolymer. This colored supramolecular assembly is one of the first synthetic systems providing control over the concentration of a small molecule, providing great potential as both T and pH chromic materials and as a basis to develop more complex systems with molecular communication.

7.
Int J Mol Sci ; 21(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877824

ABSTRACT

In this work, we report the systematic investigation of a multiresponsive complex coacervate-based underwater adhesive, obtained by combining polyelectrolyte domains and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) units. This material exhibits a transition from liquid to solid but, differently from most reactive glues, is completely held together by non-covalent interactions, i.e., electrostatic and hydrophobic. Because the solidification results in a kinetically trapped morphology, the final mechanical properties strongly depend on the preparation conditions and on the surrounding environment. A systematic study is performed to assess the effect of ionic strength and of PNIPAM content on the thermal, rheological and adhesive properties. This study enables the optimization of polymer composition and environmental conditions for this underwater adhesive system. The best performance with a work of adhesion of 6.5 J/m2 was found for the complex coacervates prepared at high ionic strength (0.75 M NaCl) and at an optimal PNIPAM content around 30% mol/mol. The high ionic strength enables injectability, while the hydrated PNIPAM domains provide additional dissipation, without softening the material so much that it becomes too weak to resist detaching stress.


Subject(s)
Adhesives/chemistry , Stimuli Responsive Polymers/chemistry , Acrylic Resins/chemistry , Biomimetic Materials/chemistry , Osmolar Concentration , Polyelectrolytes/chemistry , Temperature , Wettability
8.
Soft Matter ; 15(43): 8653-8666, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31461108

ABSTRACT

Effective remote control of mechanical toughening can be achieved by using thermo-responsive grafts such as poly(N-isopropylacrylamide) (PNIPAm) in a hydrophilic covalently cross-linked polymer network. The weight ratio of PNIPAm grafts in the network may impart such a thermo-responsive mechanical reinforcement. Here, we show that the network topology - especially graft length - is likewise crucial. A series of covalently cross-linked poly(N,N-dimethylacrylamide) (PDMA) gels grafted with PNIPAm side-chains of different lengths were designed and studied on both sides of phase separation temperature Tc, at a fixed overall polymer concentration of 16.7 wt% and constant PDMA/PNIPAm weight ratio. Phase-separated PNIPAm organic micro-domains were expected to act as responsive fillers above Tc and to generate a purely organic nanocomposite (NC). In contrast to conventional NC gels where dissipative processes take place at the solid nanoparticle/matrix interface, here dissipation originates from the disruption of the filler itself by the unravelling of the PNIPAm grafts embedded in collapsed domains. Results show that PNIPAm graft length is a key parameter to enhance - reversibly and on-demand - the mechanical response. The longer the graft is, the more effective the mechanical toughening is. Interestingly, for long PNIPAm grafts, above Tc, the hydrogels combine perfect transparency together with both increased stiffness and fracture toughness (up to 150 J m-2) at constant macroscopic volume. As a proof of concept, stimuli-responsive adhesion and shape-memory properties were designed to probe the inter-chain bridging efficiency (in bulk or bridging the interface).

9.
Adv Mater ; 31(25): e1900702, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31074929

ABSTRACT

Normally, a polymer network swells in a good solvent to form a gel but the gel shrinks in a poor solvent. Here, an abnormal phenomenon is reported: some hydrophobic gels significantly swell in water, reaching water content as high as 99.6 wt%. Such abnormal swelling behaviors in the nonsolvent water are observed universally for various hydrophobic organogels containing omniphilic organic solvents that have a higher affinity to water than to the hydrophobic polymers. The formation of a semipermeable skin layer due to rapid phase separation, and the asymmetric diffusion of water molecules into the gel driven by the high osmotic pressure of the organic solvent-water mixing, are found to be the reasons. As a result, the hydrophobic hydrogels have a fruit-like structure, consisting of hydrophobic skin and water-trapped micropores, to display various unique properties, such as significantly enhanced strength, surface hydrophobicity, and antidrying, despite their extremely high water content. Furthermore, the hydrophobic hydrogels exhibit selective water absorption from concentrated saline solutions and rapid water release at a small pressure like squeezing juices from fruits. These novel functions of hydrophobic hydrogels will find promising applications, e.g., as materials that can automatically take the fresh water from seawater.

10.
Adv Mater ; 31(21): e1808179, 2019 May.
Article in English | MEDLINE | ID: mdl-30924992

ABSTRACT

Sandcastle worms have developed protein-based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume-the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues.

11.
Biomacromolecules ; 19(2): 576-587, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29284259

ABSTRACT

Recently, alginates (ALG) characterized by high mannuronic content (M blocks) have been shown to undergo a reversible sol/gel transition during cooling in the presence of potassium salts. Cold gelling takes place at low temperatures, just below 0 °C for a KCl concentration of 0.3 mol/kg, but the aggregation process can be easily shifted to higher temperatures by increasing the salt concentration. In the present paper, we take advantage of this peculiar behavior to design a copolymer with schizophrenic gelling properties. For this purpose, side chains of poly(N-isopropylacrylamide) (PNIPAM), characterized by a Lower Critical Solution Temperature (LCST) in water, were grafted on the alginate backbone. Working in semidilute solutions, we show by coupling DSC and viscoelastic measurements that ALG-g-PNIPAM solutions are able to form gels either by cooling or heating depending on the ionic environment. As the aggregation process of ALG and PNIPAM depends mainly and respectively on the nature of the cations and anions, the choice of the salt is then critical to control the self-assembly behavior and the gel properties. Moreover, as the gelation process of alginates driven by the aggregation of mannuronic sequences is characterized by a large hysteresis of 20-30 °C between gelling and melting, both ALG and ALG-g-PNIPAM polymers offer a large versatility not only in terms of salt (nature and concentration) but also in preparation history as different states (sol or gel) can be obtained at room temperature.


Subject(s)
Acrylic Resins/chemistry , Alginates/chemistry , Cold Temperature , Hot Temperature , Potassium Compounds/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry
12.
Soft Matter ; 13(31): 5269-5282, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28676876

ABSTRACT

Supramolecular polymer networks have been designed on the basis of a π-electron donor/acceptor complex: naphthalene (N)/cyclobis(paraquat-p-phenylene) (CBPQT4+ = B). For this purpose, a copolymer of N,N-dimethylacrylamide P(DMA-N1), lightly decorated with 1 mol% of naphthalene pendant groups, has been studied in semi-dilute un-entangled solution in the presence of di-CBPQT4+ (BB) crosslinker type molecules. While calorimetric experiments demonstrate the quantitative binding between N and B groups up to 60 °C, the introduction of BB crosslinkers into the polymer solution gives rise to gel formation above the overlap concentration. From a comprehensive investigation of viscoelastic properties, performed at different concentrations, host/guest stoichiometric ratios and temperatures, the supramolecular hydrogels are shown to follow a Maxwellian behavior with a strong correlation of the plateau modulus and the relaxation time with the effective amount of interchain cross-linkers and their dissociation dynamics, respectively. The calculation of the dissociation rate constant of the supramolecular complex, by extrapolation of the relaxation time of the network back to the beginning of the gel regime, is discussed in the framework of theoretical and experimental works on associating polymers.

13.
Macromol Rapid Commun ; 38(17)2017 Sep.
Article in English | MEDLINE | ID: mdl-28718988

ABSTRACT

Dual thermoresponsive chemical hydrogels, combining poly(N-isopropylacrylamide) side-chains within a poly(N-acryloylglycinamide) network, are designed following a simple and versatile procedure. These hydrogels exhibit two phase transitions both at low (upper critical solution temperature) and high (lower critical solution temperature) temperatures, thereby modifying their swelling, rheological, and mechanical properties. These novel thermo-schizophrenic hydrogels pave the way for the development of thermotoughening wet materials in a broad range of temperatures.


Subject(s)
Hydrogels/chemistry , Mechanical Phenomena , Temperature , Acrylic Resins/chemistry , Phase Transition
14.
Angew Chem Int Ed Engl ; 55(45): 13974-13978, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27730718

ABSTRACT

Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT4+ , swelling occurred as a result of host-guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network. The immersion of NaphtGel in a solution of poly(N-isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT4+ induced positive thermoresponsive behaviour. The LCST-induced dethreading of the polymer-based pseudorotaxane upon heating led to transfer of the CBPQT4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF-based host-guest complexes in solution and contraction of the hydrogel.

16.
Adv Mater ; 28(28): 5857-64, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27159115

ABSTRACT

A novel mode of gel toughening displaying crack bifurcation is highlighted in phase-separated hydrogels. By exploring original covalent network topologies, phase-separated gels under isochoric conditions demonstrate advanced thermoresponsive mechanical properties: excellent fatigue resistance, self-healing, and remarkable fracture energies. Beyond the phase-transition temperature, the fracture proceeds by a systematic crack-bifurcation process, unreported so far in gels.

17.
Soft Matter ; 11(29): 5905-17, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26119868

ABSTRACT

Nano-hybrid hydrogels were prepared by cross-linking polymerization of N,N-dimethylacrylamide (DMA) within a dispersion of silica nano-particles. Working at constant polymer/water ratio, the mechanical properties of hydrogels can be finely tuned by changing either the level of covalent cross-linker and/or the amount of particles that act as physical cross-linkers through specific adsorption of PDMA chains. Whatever is the cross-linking ratio (from 0 to 1 mol%), the introduction of silica nano-particles dramatically improves the mechanical behavior of hydrogels with a concomitant increase of stiffness and nominal strain at failure. The physical interactions being reversible in nature, the dynamics of the adsorption/desorption process of PDMA chains directly controls the time-dependence of the mechanical properties. Small angle neutron scattering experiments, performed in contrast matching conditions, show that silica particles, which repel themselves at short range, remain randomly dispersed during the formation of the PDMA network. Although PDMA chains readily interact with silica particles, no significant variation of the polymer concentration was observed in the vicinity of silica surfaces. Together with the time dependence of physical interactions pointed out by mechanical analyses, this result is attributed to the moderate adsorption energy of PDMA chains with silica surfaces at pH 9. From 2D SANS experiments, it was shown that strain rapidly gives rise to a non affine deformation of the hybrid network with shearing due to the transverse compression of the particles. After loading at intermediate deformation, the particles recover their initial distribution due to the covalent network that is not damaged in these conditions. That is no longer true at high deformation where residual anisotropy is observed.


Subject(s)
Hydrogels/chemistry , Nanostructures/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Acrylamides/chemistry , Neutron Diffraction , Scattering, Small Angle , Surface Properties
18.
Carbohydr Polym ; 117: 331-338, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25498643

ABSTRACT

New thermo associating polymers were designed and synthesized by grafting amino terminated poly(ethylene oxide-co-propylene oxide) (PEPO) onto carboxymethyl guar (CMG) and carboxymethyl tamarind (CMT). The grafting was performed by coupling reaction between NH2 groups of PEPO and COOH groups of CMG and CMT using water-soluble EDC/NHS as coupling agents. The grafting efficiency and the temperature of thermo-association, T(assoc) in the copolymer were studied by NMR spectroscopy. The graft copolymers, CMG-g-PEPO and CMT-g-PEPO exhibited interesting thermo-associating behavior which was evidenced by the detailed rheological and fluorescence measurements. The visco-elastic properties (storage modulus, G'; loss modulus, G") of the copolymer solutions were investigated using oscillatory shear experiments. The influence of salt and surfactant on the T(assoc) was also studied by rheology, where the phenomenon of "Salting out" and "Salting in" was observed for salt and surfactant, respectively, which can give an easy access to tunable properties of these copolymers. These thermo-associating polymers with biodegradable nature of CMG and CMT can have potential applications as smart injectables in controlled release technology and as thickeners in cosmetics and pharmaceutical formulations.


Subject(s)
Plant Gums/chemistry , Poloxamer/chemistry , Polymerization , Elasticity , Poloxamer/analogs & derivatives
19.
Langmuir ; 30(32): 9700-6, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25099624

ABSTRACT

We investigated the effect of specific interactions on the structure of interfaces between a brush and a hydrogel on the polymer chain length scale. We used a model system for which the interactions between the brush and the gel are switchable. We synthesized weak polyelectrolyte brushes of poly(acrylic acid) and hydrogels of polyacrylamide and poly(N,N-dimethylacrylamide) which interact solely when the poly(acrylic acid) is mainly in its acidic form. The monomer density profiles of the poly(acrylic acid) brush immersed in pure deuterium oxide (D2O) or in contact with a D2O-swollen gel were determined by neutron reflectivity. At pH 2 when the brush is in its neutral form, it interacts with the gel by hydrogen bonds while at pH 9 when the brush is a polyelectrolyte it is not interacting with the gel. Our results show that the presence of interactions with the gel at pH 2 increases the swelling ratio of the brush relative to that in pure D2O, meaning that the brushes exhibit conformations which are more extended from the surface than in the absence of interactions.


Subject(s)
Hydrogels/chemistry , Polymers/chemistry , Hydrogen-Ion Concentration , Neutrons
20.
Nature ; 505(7483): 382-5, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24336207

ABSTRACT

Adhesives are made of polymers because, unlike other materials, polymers ensure good contact between surfaces by covering asperities, and retard the fracture of adhesive joints by dissipating energy under stress. But using polymers to 'glue' together polymer gels is difficult, requiring chemical reactions, heating, pH changes, ultraviolet irradiation or an electric field. Here we show that strong, rapid adhesion between two hydrogels can be achieved at room temperature by spreading a droplet of a nanoparticle solution on one gel's surface and then bringing the other gel into contact with it. The method relies on the nanoparticles' ability to adsorb onto polymer gels and to act as connectors between polymer chains, and on the ability of polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles. We demonstrate this approach by pressing together pieces of hydrogels, for approximately 30 seconds, that have the same or different chemical properties or rigidities, using various solutions of silica nanoparticles, to achieve a strong bond. Furthermore, we show that carbon nanotubes and cellulose nanocrystals that do not bond hydrogels together become adhesive when their surface chemistry is modified. To illustrate the promise of the method for biological tissues, we also glued together two cut pieces of calf's liver using a solution of silica nanoparticles. As a rapid, simple and efficient way to assemble gels or tissues, this method is desirable for many emerging technological and medical applications such as microfluidics, actuation, tissue engineering and surgery.


Subject(s)
Adhesives/chemistry , Hydrogels/chemistry , Liver , Nanoparticles/chemistry , Animals , Cattle , Cellulose/chemistry , Nanotubes, Carbon/chemistry , Polymers/chemistry , Shear Strength , Silicon Dioxide/chemistry , Solutions , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...