Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Dev Comp Immunol ; 153: 105132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38181832

ABSTRACT

The polychaete Capitella is a typical member of the 'thiobiome', and is commonly used as an eutrophication indicator species in environmental assessment studies. To deal with a sulfide-rich and poisonous surrounding, cells in close contact with the environment, and thus able to play a major role in detoxication and survival, are circulating cells. This work aimed to morpho-functionally describe the circulating coelomic cells of Capitella from the English Channel inhabiting the sulfide-rich mud in Roscoff Harbor. In general, worms have three types of circulating cells, granulocytes involved in bacterial clearance and defense against microorganisms, eleocytes with an essentially trophic role and elimination of cellular waste, and erythrocytes which play a role in detoxification and respiration via their intracellular hemoglobin. By combining diverse microscopic and cellular approaches, we provide evidence that Capitella does not possess granulocytes and eleocytes, but rather a single abundant rounded cell type with the morphological characteristics of erythrocytes i.e. small size and production of intracellular hemoglobin. Surprisingly, our data show that in addition to their respiratory function, these red cells could exert phagocytic activities, and produce an antimicrobial peptide. This latter immune role is usually supported by granulocytes. Our data highlight that the erythrocytes of Capitella from the English Channel differ in morphology and bear more functions than the erythrocytes of other annelids. The simplicity of this multi-task (or polyvalent) single-cell type makes Capitella an interesting model for studies of the impact of the environment on the immunity of this bioindicator species.


Subject(s)
Annelida , Polychaeta , Animals , Environmental Biomarkers , Polychaeta/metabolism , Respiration , Hemoglobins/metabolism , Sulfides/metabolism
2.
Anim Microbiome ; 5(1): 30, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264469

ABSTRACT

BACKGROUND: High latitude seeps are dominated by Oligobrachia siboglinid worms. Since these worms are often the sole chemosymbiotrophic taxon present (they host chemosynthetic bacteria within the trophosome organ in their trunk region), a key question in the study of high latitude seep ecology has been whether they harbor methanotrophic symbionts. This debate has manifested due to the mismatch between stable carbon isotope signatures of the worms (lower than -50‰ and usually indicative of methanotrophic symbioses) and the lack of molecular or microscopic evidence for methanotrophic symbionts. Two hypotheses have circulated to explain this paradox: (1) the uptake of sediment carbon compounds with depleted δC13 values from the seep environment, and (2) a small, but significant and difficult to detect population of methanotrophic symbionts. We conducted 16S rRNA amplicon sequencing of the V3-V4 regions on two species of northern seep Oligobrachia (Oligobrachia webbi and Oligobrachia sp. CPL-clade), from four different high latitude sites, to investigate the latter hypothesis. We also visually checked the worms' symbiotic bacteria within the symbiont-hosting organ, the trophosome, through transmission electron microscopy. RESULTS: The vast majority of the obtained reads corresponded to sulfide-oxidizers and only a very small proportion of the reads pertained to methane-oxidizers, which suggests a lack of methanotrophic symbionts. A number of sulfur oxidizing bacterial strains were recovered from the different worms, however, host individuals tended to possess a single strain, or sometimes two closely-related strains. However, strains did not correspond specifically with either of the two Oligobrachia species we investigated. Water depth could play a role in determining local sediment bacterial communities that were opportunistically taken up by the worms. Bacteria were abundant in non-trophosome (and thereby symbiont-free) tissue and are likely epibiotic or tube bacterial communities. CONCLUSIONS: The absence of methanotrophic bacterial sequences in the trophosome of Arctic and north Atlantic seep Oligobrachia likely indicates a lack of methanotrophic symbionts in these worms, which suggests that nutrition is sulfur-based. This is turn implies that sediment carbon uptake is responsible for the low δ13C values of these animals. Furthermore, endosymbiotic partners could be locally determined, and possibly only represent a fraction of all bacterial sequences obtained from tissues of these (and other) species of frenulates.

3.
Sci Total Environ ; 879: 162875, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36933721

ABSTRACT

Antimicrobial peptides (AMPs) play a key role in the external immunity of animals, offering an interesting model for studying the influence of the environment on the diversification and evolution of immune effectors. Alvinellacin (ALV), arenicin (ARE) and polaricin (POL, a novel AMP identified here), characterized from three marine worms inhabiting contrasted habitats ('hot' vents, temperate and polar respectively), possess a well conserved BRICHOS domain in their precursor molecule despite a profound amino acid and structural diversification of the C-terminal part containing the core peptide. Data not only showed that ARE, ALV and POL display an optimal bactericidal activity against the bacteria typical of the habitat where each worm species lives but also that this killing efficacy is optimal under the thermochemical conditions encountered by their producers in their environment. Moreover, the correlation between species habitat and the cysteine contents of POL, ARE and ALV led us to investigate the importance of disulfide bridges in their biological efficacy as a function of abiotic pressures (pH and temperature). The construction of variants using non-proteinogenic residues instead of cysteines (α-aminobutyric acid variants) leading to AMPs devoid of disulfide bridges, provided evidence that the disulfide pattern of the three AMPs allows for a better bactericidal activity and suggests an adaptive way to sustain the fluctuations of the worm's environment. This work shows that the external immune effectors exemplified here by BRICHOS AMPs are evolving under strong diversifying environmental pressures to be structurally shaped and more efficient/specific under the ecological niche of their producer.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Animals , Antimicrobial Cationic Peptides/chemistry , Amino Acid Sequence , Amino Acids , Cysteine/chemistry , Disulfides
4.
PLoS One ; 17(10): e0275638, 2022.
Article in English | MEDLINE | ID: mdl-36197893

ABSTRACT

Understanding drivers of biodiversity patterns is essential to evaluate the potential impact of deep-sea mining on ecosystems resilience. While the South West Pacific forms an independent biogeographic province for hydrothermal vent fauna, different degrees of connectivity among basins were previously reported for a variety of species depending on their ability to disperse. In this study, we compared phylogeographic patterns of several vent gastropods across South West Pacific back-arc basins and the newly-discovered La Scala site on the Woodlark Ridge by analysing their genetic divergence using a barcoding approach. We focused on six genera of vent gastropods widely distributed in the region: Lepetodrilus, Symmetromphalus, Lamellomphalus, Shinkailepas, Desbruyeresia and Provanna. A wide-range sampling was conducted at different vent fields across the Futuna Volcanic Arc, the Manus, Woodlark, North Fiji, and Lau Basins, during the CHUBACARC cruise in 2019. The Cox1-based genetic structure of geographic populations was examined for each taxon to delineate putative cryptic species and assess potential barriers or contact zones between basins. Results showed contrasted phylogeographic patterns among species, even between closely related species. While some species are widely distributed across basins (i.e. Shinkailepas tollmanni, Desbruyeresia melanioides and Lamellomphalus) without evidence of strong barriers to gene flow, others are restricted to one (i.e. Shinkailepas tufari complex of cryptic species, Desbruyeresia cancellata and D. costata). Other species showed intermediate patterns of isolation with different lineages separating the Manus Basin from the Lau/North Fiji Basins (i.e. Lepetodrilus schrolli, Provanna and Symmetromphalus spp.). Individuals from the Woodlark Basin were either endemic to this area (though possibly representing intermediate OTUs between the Manus Basin and the other eastern basins populations) or, coming into contact from these basins, highlighting the stepping-stone role of the Woodlark Basin in the dispersal of the South West Pacific vent fauna. Results are discussed according to the dispersal ability of species and the geological history of the South West Pacific.


Subject(s)
Gastropoda , Hydrothermal Vents , Animals , Biodiversity , Ecosystem , Gastropoda/genetics , Humans , Pacific Ocean , Phylogeny , Phylogeography
5.
BMC Ecol Evol ; 22(1): 106, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057769

ABSTRACT

BACKGROUND: The transient and fragmented nature of the deep-sea hydrothermal environment made of ridge subduction, plate collision and the emergence of new rifts is currently acting to separate of vent populations, promoting local adaptation and contributing to bursts of speciation and species specialization. The tube-dwelling worms Alvinella pompejana called the Pompeii worm and its sister species A. caudata live syntopically on the hottest part of deep-sea hydrothermal chimneys along the East Pacific Rise. They are exposed to extreme thermal and chemical gradients, which vary greatly in space and time, and thus represent ideal candidates for understanding the evolutionary mechanisms at play in the vent fauna evolution. RESULTS: We explored genomic patterns of divergence in the early and late stages of speciation of these emblematic worms using transcriptome assemblies and the first draft genome to better understand the relative role of geographic isolation and habitat preference in their genome evolution. Analyses were conducted on allopatric populations of Alvinella pompejana (early stage of separation) and between A. pompejana and its syntopic species Alvinella caudata (late stage of speciation). We first identified divergent genomic regions and targets of selection as well as their position in the genome over collections of orthologous genes and, then, described the speciation dynamics by documenting the annotation of the most divergent and/or positively selected genes involved in the isolation process. Gene mapping clearly indicated that divergent genes associated with the early stage of speciation, although accounting for nearly 30% of genes, are highly scattered in the genome without any island of divergence and not involved in gamete recognition or mito-nuclear incompatibilities. By contrast, genomes of A. pompejana and A. caudata are clearly separated with nearly all genes (96%) exhibiting high divergence. This congealing effect however seems to be linked to habitat specialization and still allows positive selection on genes involved in gamete recognition, as a possible long-duration process of species reinforcement. CONCLUSION: Our analyses highlight the non-negligible role of natural selection on both the early and late stages of speciation in the iconic thermophilic worms living on the walls of deep-sea hydrothermal chimneys. They shed light on the evolution of gene divergence during the process of speciation and species specialization over a very long period of time.


Subject(s)
Polychaeta , Acclimatization , Adaptation, Physiological , Animals , Genomics , Polychaeta/genetics , Selection, Genetic
6.
Ecol Evol ; 12(7): e9093, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35866013

ABSTRACT

The Antarctic marine environment hosts diversified and highly endemic benthos owing to its unique geologic and climatic history. Current warming trends have increased the urgency of understanding Antarctic species history to predict how environmental changes will impact ecosystem functioning. Antarctic benthic lineages have traditionally been examined under three hypotheses: (1) high endemism and local radiation, (2) emergence of deep-sea taxa through thermohaline circulation, and (3) species migrations across the Polar Front. In this study, we investigated which hypotheses best describe benthic invertebrate origins by examining Antarctic scale worms (Polynoidae). We amassed 691 polynoid sequences from the Southern Ocean and neighboring areas: the Kerguelen and Tierra del Fuego (South America) archipelagos, the Indian Ocean, and waters around New Zealand. We performed phylogenetic reconstructions to identify lineages across geographic regions, aided by mitochondrial markers cytochrome c oxidase subunit I (Cox1) and 16S ribosomal RNA (16S). Additionally, we produced haplotype networks at the species scale to examine genetic diversity, biogeographic separations, and past demography. The Cox1 dataset provided the most illuminating insights into the evolution of polynoids, with a total of 36 lineages identified. Eunoe sp. was present at Tierra del Fuego and Kerguelen, in favor of the latter acting as a migration crossroads. Harmothoe fuligineum, widespread around the Antarctic continent, was also present but isolated at Kerguelen, possibly resulting from historical freeze-thaw cycles. The genus Polyeunoa appears to have diversified prior to colonizing the continent, leading to the co-occurrence of at least three cryptic species around the Southern and Indian Oceans. Analyses identified that nearly all populations are presently expanding following a bottleneck event, possibly caused by habitat reduction from the last glacial episodes. Findings support multiple origins for contemporary Antarctic polynoids, and some species investigated here provide information on ancestral scenarios of (re)colonization. First, it is apparent that species collected from the Antarctic continent are endemic, as the absence of closely related species in the Kerguelen and Tierra del Fuego datasets for most lineages argues in favor of Hypothesis 1 of local origin. Next, Eunoe sp. and H. fuligineum, however, support the possibility of Kerguelen and other sub-Antarctic islands acting as a crossroads for larvae of some species, in support of Hypothesis 3. Finally, the genus Polyeunoa, conversely, is found at depths greater than 150 m and may have a deep origin, in line with Hypothesis 2. These "non endemic" groups, nevertheless, have a distribution that is either north or south of the Antarctic Polar Front, indicating that there is still a barrier to dispersal, even in the deep sea.

7.
Genes (Basel) ; 13(6)2022 05 31.
Article in English | MEDLINE | ID: mdl-35741747

ABSTRACT

Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.


Subject(s)
Hydrothermal Vents , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Phylogeny , Snails
8.
Mol Ecol ; 31(10): 2796-2813, 2022 05.
Article in English | MEDLINE | ID: mdl-35305041

ABSTRACT

Hydrothermal vents form archipelagos of ephemeral deep-sea habitats that raise interesting questions about the evolution and dynamics of the associated endemic fauna, constantly subject to extinction-recolonization processes. These metal-rich environments are coveted for the mineral resources they harbour, thus raising recent conservation concerns. The evolutionary fate and demographic resilience of hydrothermal species strongly depend on the degree of connectivity among and within their fragmented metapopulations. In the deep sea, however, assessing connectivity is difficult and usually requires indirect genetic approaches. Improved detection of fine-scale genetic connectivity is now possible based on genome-wide screening for genetic differentiation. Here, we explored population connectivity in the hydrothermal vent snail Ifremeria nautilei across its species range encompassing five distinct back-arc basins in the Southwest Pacific. The global analysis, based on 10,570 single nucleotide polymorphism (SNP) markers derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), depicted two semi-isolated and homogeneous genetic clusters. Demogenetic modeling suggests that these two groups began to diverge about 70,000 generations ago, but continue to exhibit weak and slightly asymmetrical gene flow. Furthermore, a careful analysis of outlier loci showed subtle limitations to connectivity between neighbouring basins within both groups. This finding indicates that migration is not strong enough to totally counterbalance drift or local selection, hence questioning the potential for demographic resilience at this latter geographical scale. These results illustrate the potential of large genomic data sets to understand fine-scale connectivity patterns in hydrothermal vents and the deep sea.


Subject(s)
Hydrothermal Vents , Animals , Ecosystem , Gene Flow , Sequence Analysis, DNA , Snails/genetics
9.
Genes (Basel) ; 13(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35205251

ABSTRACT

The polychaete Alvinella pompejana lives exclusively on the walls of deep-sea hydrothermal chimneys along the East Pacific Rise (EPR), and displays specific adaptations to withstand the high temperatures and hypoxia associated with this highly variable habitat. Previous studies have revealed the existence of a balanced polymorphism on the enzyme phosphoglucomutase associated with thermal variations, where allozymes 90 and 100 exhibit different optimal activities and thermostabilities. Exploration of the mutational landscape of phosphoglucomutase 1 revealed the maintenance of four highly divergent allelic lineages encoding the three most frequent electromorphs over the geographic range of A. pompejana. This polymorphism is only governed by two linked amino acid replacements, located in exon 3 (E155Q and E190Q). A two-niche model of selection, including 'cold' and 'hot' conditions, represents the most likely scenario for the long-term persistence of these isoforms. Using directed mutagenesis and the expression of the three recombinant variants allowed us to test the additive effect of these two mutations on the biochemical properties of this enzyme. Our results are coherent with those previously obtained from native proteins, and reveal a thermodynamic trade-off between protein thermostability and catalysis, which is likely to have maintained these functional phenotypes prior to the geographic separation of populations across the Equator about 1.2 million years ago.


Subject(s)
Phosphoglucomutase , Polychaeta , Alleles , Animals , Mutation , Phosphoglucomutase/genetics , Polychaeta/genetics , Polymorphism, Genetic
10.
Zookeys ; 1122: 81-105, 2022.
Article in English | MEDLINE | ID: mdl-36761212

ABSTRACT

Three new species of Marphysa Quatrefages, 1866, Marphysabanana sp. nov., Marphysapapuaensis sp. nov., and Marphysazanolae sp. nov. are described from deep-sea sunken vegetation off Papua New Guinea, using both morphology and molecular data (for two species). With the presence of compound spinigers only and the branchiae present over many chaetigers, Marphysabanana sp. nov. belongs to the group B2. This species is characterised by the presence of eyes, the presence of branchiae starting from chaetiger 20, and by the presence of three types of pectinate chaetae and bidentate subacicular hooks starting from chaetigers 13-52. With the presence of compound falcigers only and the branchiae restricted to a short anterior region, Marphysapapuaensis sp. nov. belongs to the group C1. This species has a bilobed prostomium but no eyes, has branchiae from chaetigers 7 to 14-16 with up to 16 filaments. Marphysapapuaensis sp. nov. is also characterised by the presence of bidentate subacicular hooks from chaetiger 20 and by a single type of pectinate chaetae. Finally, Marphysazanolae sp. nov. belongs to the group C2, with the presence of compound falcigers only and the branchiae present over many chaetigers. This species is characterised by the absence of eyes, by the presence of branchiae with a single long filament starting from chaetiger 31, by unidentate subacicular hooks starting from chaetiger 28 and finally by one type of pectinate chaetae with very long outer teeth.

11.
Mob DNA ; 12(1): 24, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34715903

ABSTRACT

BACKGROUND: With the expansion of high throughput sequencing, we now have access to a larger number of genome-wide studies analyzing the Transposable elements (TEs) composition in a wide variety of organisms. However, genomic analyses often remain too limited in number and diversity of species investigated to study in depth the dynamics and evolutionary success of the different types of TEs among metazoans. Therefore, we chose to investigate the use of transcriptomes to describe the diversity of TEs in phylogenetically related species by conducting the first comparative analysis of TEs in two groups of polychaetes and evaluate the diversity of TEs that might impact genomic evolution as a result of their mobility. RESULTS: We present a detailed analysis of TEs distribution in transcriptomes extracted from 15 polychaetes depending on the number of reads used during assembly, and also compare these results with additional TE scans on associated low-coverage genomes. We then characterized the clades defined by 1021 LTR-retrotransposon families identified in 26 species. Clade richness was highly dependent on the considered superfamily. Copia elements appear rare and are equally distributed in only three clades, GalEa, Hydra and CoMol. Among the eight BEL/Pao clades identified in annelids, two small clades within the Sailor lineage are new for science. We characterized 17 Gypsy clades of which only 4 are new; the C-clade largely dominates with a quarter of the families. Finally, all species also expressed for the majority two distinct transcripts encoding PIWI proteins, known to be involved in control of TEs mobilities. CONCLUSIONS: This study shows that the use of transcriptomes assembled from 40 million reads was sufficient to access to the diversity and proportion of the transposable elements compared to those obtained by low coverage sequencing. Among LTR-retrotransposons Gypsy elements were unequivocally dominant but results suggest that the number of Gypsy clades, although high, may be more limited than previously thought in metazoans. For BEL/Pao elements, the organization of clades within the Sailor lineage appears more difficult to establish clearly. The Copia elements remain rare and result from the evolutionary consistent success of the same three clades.

12.
Sci Total Environ ; 798: 149149, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34375231

ABSTRACT

Capitella spp. is considered as an important ecological indicator of eutrophication due to its high densities in organic-rich, reduced, and sometimes polluted coastal ecosystems. We investigated whether such ability to cope with adverse ecological contexts might be a response to the microorganisms these worms are associated with. In populations from the French Atlantic coast (Roscoff, Brittany), we observed an epibiotic association covering the tegument of 20-30% specimens from an anthropized site while individuals from a reference, non-anthropized site were devoid of any visible epibionts. Using RNAseq, molecular and microscopic analyses, we described and compared the microbial communities associated with the epibiotic versus the non-epibiotic specimens at both locations. Interestingly, data showed that the epibiosis is characterized by sulfur-oxidizing bacteria among which the giant bacterium Thiomargarita sp., to date only described in deep sea habitats. Survey of Capitella combined with the geochemical analysis of their sediment revealed that epibiotic specimens are always found in muds with the highest concentration of sulfides, mostly during the summer. Concomitantly, tolerance tests demonstrated that the acquisition of epibionts increased survival against toxic level of sulfides. Overall, the present data highlight for the first time a peculiar plastic adaptation to seasonal variations of the habitat based on a transcient epibiosis allowing a coastal species to survive temporary harsher conditions.


Subject(s)
Polychaeta , Sulfides , Animals , Bacteria , Ecosystem , Geologic Sediments , Humans , Seasons
13.
Zookeys ; 932: 27-74, 2020.
Article in English | MEDLINE | ID: mdl-32476973

ABSTRACT

Polynoidae Kinberg, 1856 has five branchiate genera: Branchipolynoe Pettibone, 1984, Branchinotogluma Pettibone, 1985, Branchiplicatus Pettibone, 1985, Peinaleopolynoe Desbruyères & Laubier, 1988, and Thermopolynoe Miura, 1994, all native to deep-sea, chemosynthetic-based habitats. Of these, Peinaleopolynoe has two accepted species; Peinaleopolynoe sillardi Desbruyères & Laubier, 1988 (Atlantic Ocean) and Peinaleopolynoe santacatalina Pettibone, 1993 (East Pacific Ocean). The goal of this study was to assess the phylogenetic position of Peinaleopolynoe, utilizing DNA sequences from a broad sampling of deep-sea polynoids. Representatives from all five branchiate genera were included, several species of which were sampled from near the type localities; Branchinotogluma sandersi Pettibone, 1985 from the Galápagos Rift (E/V "Nautilus"); Peinaleopolynoe sillardi from organic remains in the Atlantic Ocean; Peinaleopolynoe santacatalina from a whalefall off southern California (R/V "Western Flyer") and Thermopolynoe branchiata Miura, 1994 from Lau Back-Arc Basin in the western Pacific (R/V "Melville"). Phylogenetic analyses were conducted using mitochondrial (COI, 16S rRNA, and CytB) and nuclear (18S rRNA, 28S rRNA, and H3) genes. The analyses revealed four new Peinaleopolynoe species from the Pacific Ocean that are formally described here: Peinaleopolynoe orphanae Hatch & Rouse, sp. nov., type locality Pescadero Basin in the Gulf of California, Mexico (R/V "Western Flyer"); Peinaleopolynoe elvisi Hatch & Rouse, sp. nov. and Peinaleopolynoe goffrediae Hatch & Rouse, sp. nov., both with a type locality in Monterey Canyon off California (R/V "Western Flyer") and Peinaleopolynoe mineoi Hatch & Rouse, sp. nov. from Costa Rica methane seeps (R/V "Falkor"). In addition to DNA sequence data, the monophyly of Peinaleopolynoe is supported by the presence of ventral papillae on segments 12-15. The results also demonstrated the paraphyly of Branchinotogluma and Lepidonotopodium Pettibone, 1983 and taxonomic revision of these genera is required. We apply the subfamily name Lepidonotopodinae Pettibone 1983, for the clade comprised of Branchipolynoe, Branchinotogluma, Bathykurila, Branchiplicatus, Lepidonotopodium, Levensteiniella Pettibone, 1985, Thermopolynoe, and Peinaleopolynoe.

14.
Langmuir ; 36(28): 8218-8230, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32585107

ABSTRACT

Protein adsorption on nanoparticles is an important field of study, particularly with regard to nanomedicine and nanotoxicology. Many factors can influence the composition and structure of the layer(s) of adsorbed proteins, the so-called protein corona. However, the role of protein size has not been specifically investigated, although some evidence has indicated its potential important role in corona composition and structure. To assess the role of protein size, we studied the interactions of hemoproteins (spanning a large size range) with monodisperse silica nanoparticles. We combined various techniques-adsorption isotherms, isothermal titration calorimetry, circular dichroism, and transmission electron cryomicroscopy-to address this issue. Overall, the results show that small proteins behaved as typical model proteins, forming homogeneous monolayers on the nanoparticle surface (protein corona). Their adsorption is purely enthalpy-driven, with subtle structural changes. In contrast, large proteins interact with nanoparticles via entropy-driven mechanisms. Their structure is completely preserved during adsorption, and any given protein can directly bind to several nanoparticles, forming bridges in these newly formed protein-nanoparticle assemblies. Protein size is clearly an overlooked factor that should be integrated into proteomics and toxicological studies.


Subject(s)
Nanoparticles , Protein Corona , Adsorption , Proteins , Silicon Dioxide
15.
Front Zool ; 17: 12, 2020.
Article in English | MEDLINE | ID: mdl-32391066

ABSTRACT

The chemosymbiotic gastropod Alviniconcha (Provannidae), first described in 1988, is one of the most emblematic hydrothermal-vent taxa described from the Central Indian Ridge and the Southwest (SW) Pacific. Symbiotic bacteria found in the gill of Alviniconcha are thought to be their principal source of nutrition. In the SW Pacific, species distributions for A. kojimai, A. boucheti - and to a lesser extent A. strummeri - overlap. While Alviniconcha species do not appear to truly co-exist in these highly energetic but spatially limited habitats, certain species regularly co-occur within a single vent field and in rare instances, the same edifice. Past research suggests that SW-Pacific Alviniconcha species might aggregate around fluids with distinct geothermal profiles. These small-scale distribution patterns have been attributed to differences in their symbiont assemblages or host physiologies. However, little is known about the anatomy of most Alviniconcha species, beyond that detailed for the type species Alviniconcha hessleri, whose geographic range does not overlap with other congeners. In fact, species within this genus are currently described as cryptic, despite the absence of any comparative morphological studies to assess this. To test whether the genus is genuinely cryptic and identify any functional differences in host anatomy that might also mediate habitat partitioning in SW Pacific species, the current study examined the morphoanatomy of A. kojimai, A. boucheti and A. strummeri from the Fatu Kapa vent field, an area of hydrothermal activity recently discovered north of the Lau Basin near the Wallis and Futuna Islands and the only known example where all three species occur within adjacent vent fields. A combination of detailed dissections, histology and X-ray computed tomography demonstrate that A. kojimai, A. strummeri and A. boucheti are readily identifiable based on shell morphology and ornamentation alone, and therefore not truly cryptic. These traits provide a rapid and reliable means for species identification. However, aside from some subtle differences in radular morphology, these species of Alviniconcha exhibit conserved anatomical features, providing no evidence that functional host anatomy is implicated in habitat partitioning. This provides support for the current belief that host-species distributions are probably governed by symbiont-mediated physiological factors.

16.
Ecol Evol ; 10(3): 1339-1351, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32076518

ABSTRACT

Frenulate species were identified from a high Arctic methane seep area on Vestnesa Ridge, western Svalbard margin (79°N, Fram Strait) based on mitochondrial cytochrome oxidase subunit I (mtCOI). Two species were found: Oligobrachia haakonmosbiensis, and a new, distinct, and undescribed Oligobrachia species. The new species adds to the cryptic Oligobrachia species complex found at high latitude methane seeps in the north Atlantic and the Arctic. However, this species displays a curled tube morphology and light brown coloration that could serve to distinguish it from other members of the complex. A number of single tentacle individuals were recovered which were initially thought to be members of the only unitentaculate genus, Siboglinum. However, sequencing revealed them to be the new species and the single tentacle morphology, in addition to thin, colorless, and ringless tubes indicate that they are juveniles. This is the first known report of juveniles of northern Oligobrachia. Since the juveniles all appeared to be at about the same developmental stage, it is possible that reproduction is either synchronized within the species, or that despite continuous reproduction, settlement, and growth in the sediment only takes place at specific periods. The new find of the well-known species O. haakonmosbiensis extends its range from the Norwegian Sea to high latitudes of the Arctic in the Fram Strait. We suggest bottom currents serve as the main distribution mechanism for high latitude Oligobrachia species and that water depth constitutes a major dispersal barrier. This explains the lack of overlap between the distributions of northern Oligobrachia species despite exposure to similar current regimes. Our results point toward a single speciation event within the Oligobrachia clade, and we suggest that this occurred in the late Neogene, when topographical changes occurred and exchanges between Arctic and North Atlantic water masses and subsequent thermohaline circulation intensified.

17.
Sci Rep ; 9(1): 7019, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31065037

ABSTRACT

Prokaryotes and free-living nematodes are both very abundant and co-occur in marine environments, but little is known about their possible association. Our objective was to characterize the microbiome of a neglected but ecologically important group of free-living benthic nematodes of the Oncholaimidae family. We used a multi-approach study based on microscopic observations (Scanning Electron Microscopy and Fluorescence In Situ Hybridization) coupled with an assessment of molecular diversity using metabarcoding based on the 16S rRNA gene. All investigated free-living marine nematode specimens harboured distinct microbial communities (from the surrounding water and sediment and through the seasons) with ectosymbiosis seemed more abundant during summer. Microscopic observations distinguished two main morphotypes of bacteria (rod-shaped and filamentous) on the cuticle of these nematodes, which seemed to be affiliated to Campylobacterota and Gammaproteobacteria, respectively. Both ectosymbionts belonged to clades of bacteria usually associated with invertebrates from deep-sea hydrothermal vents. The presence of the AprA gene involved in sulfur metabolism suggested a potential for chemosynthesis in the nematode microbial community. The discovery of potential symbiotic associations of a shallow-water organism with taxa usually associated with deep-sea hydrothermal vents, is new for Nematoda, opening new avenues for the study of ecology and bacterial relationships with meiofauna.


Subject(s)
Bacteria/classification , Nematoda/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Animals , Aquatic Organisms/microbiology , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , In Situ Hybridization, Fluorescence , Male , Microscopy, Electron, Scanning , Phylogeny , Sulfur/metabolism , Symbiosis
18.
PLoS One ; 13(12): e0209273, 2018.
Article in English | MEDLINE | ID: mdl-30592732

ABSTRACT

We provide the first detailed identification of Barents Sea cold seep frenulate hosts and their symbionts. Mitochondrial COI sequence analysis, in combination with detailed morphological investigations through both light and electron microscopy was used for identifying frenulate hosts, and comparing them to Oligobrachia haakonmosbiensis and Oligobrachia webbi, two morphologically similar species known from the Norwegian Sea. Specimens from sites previously assumed to host O. haakonmosbiensis were included in our molecular analysis, which allowed us to provide new insight on the debate regarding species identity of these Oligobrachia worms. Our results indicate that high Arctic seeps are inhabited by a species that though closely related to Oligobrachia haakonmosbiensis, is nonetheless distinct. We refer to this group as the Oligobrachia sp. CPL-clade, based on the colloquial names of the sites they are currently known to inhabit. Since members of the Oligobrachia sp. CPL-clade cannot be distinguished from O. haakonmosbiensis or O. webbi based on morphology, we suggest that a complex of cryptic Oligobrachia species inhabit seeps in the Norwegian Sea and the Arctic. The symbionts of the Oligobrachia sp. CPL-clade were also found to be closely related to O. haakonmosbiensis symbionts, but genetically distinct. Fluorescent in situ hybridization and transmission electron micrographs revealed extremely dense populations of bacteria within the trophosome of members of the Oligobrachia sp. CPL-clade, which is unusual for frenulates. Bacterial genes for sulfur oxidation were detected and small rod shaped bacteria (round in cross section), typical of siboglinid-associated sulfur-oxidizing bacteria, were seen on electron micrographs of trophosome bacteriocytes, suggesting that sulfide constitutes the main energy source. We hypothesize that specific, local geochemical conditions, in particular, high sulfide fluxes and concentrations could account for the unusually high symbiont densities in members of the Oligrobrachia sp. CPL-clade.


Subject(s)
Bacteria , Polychaeta/microbiology , Animals , Arctic Regions , Bacteria/genetics , Cold Temperature , DNA, Mitochondrial , Norway , Oceans and Seas , Phylogeny , Polychaeta/anatomy & histology , Polychaeta/ultrastructure , RNA, Bacterial , RNA, Ribosomal, 16S , Symbiosis
19.
ISME J ; 11(7): 1545-1558, 2017 07.
Article in English | MEDLINE | ID: mdl-28375213

ABSTRACT

At deep-sea hydrothermal vents, primary production is carried out by chemolithoautotrophic microorganisms, with the oxidation of reduced sulfur compounds being a major driver for microbial carbon fixation. Dense and highly diverse assemblies of sulfur-oxidizing bacteria (SOB) are observed, yet the principles of niche differentiation between the different SOB across geochemical gradients remain poorly understood. In this study niche differentiation of the key SOB was addressed by extensive sampling of active sulfidic vents at six different hydrothermal venting sites in the Manus Basin, off Papua New Guinea. We subjected 33 diffuse fluid and water column samples and 23 samples from surfaces of chimneys, rocks and fauna to a combined analysis of 16S rRNA gene sequences, metagenomes and real-time in situ measured geochemical parameters. We found Sulfurovum Epsilonproteobacteria mainly attached to surfaces exposed to diffuse venting, while the SUP05-clade dominated the bacterioplankton in highly diluted mixtures of vent fluids and seawater. We propose that the high diversity within Sulfurimonas- and Sulfurovum-related Epsilonproteobacteria observed in this study derives from the high variation of environmental parameters such as oxygen and sulfide concentrations across small spatial and temporal scales.


Subject(s)
Epsilonproteobacteria/classification , Epsilonproteobacteria/physiology , Hydrothermal Vents/microbiology , Seawater/microbiology , Sulfur/metabolism , Carbon Cycle , Environmental Microbiology , Genome, Bacterial , Metagenome , Oxidation-Reduction , Oxides , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfur/chemistry , Sulfur Compounds
20.
Genome Biol Evol ; 9(2): 279-296, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28082607

ABSTRACT

Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level.


Subject(s)
Acclimatization , Evolution, Molecular , Polychaeta/genetics , Proteome/genetics , Animals , Cold Temperature , Genetic Loci , Hydrothermal Vents , Phylogeny , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...