Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(8): 3940-3951, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36895658

ABSTRACT

Herein, zinc vanadium oxide (ZVO) and zinc hydroxy-sulfate (ZHS) formation as discharge products in sodium vanadium oxide (NVO) cathode materials of two distinct morphologies, NVO(300) and NVO(500), is studied with ex situ and operando X-ray diffraction methods. ZHS formation upon discharge is shown to be favored at higher current densities and reversible upon charge, while ZVO formation is found to be favored at lower current densities but persists throughout cycling. Operando synchrotron-based energy dispersive X-ray diffraction (EDXRD) reveals reversible expansion of the NVO lattice due to Zn2+ during discharge, spontaneous ZVO formation following cell assembly, and ZHS formation concomitant with H+ insertion at potentials less than ∼0.8 V vs Zn/Zn2+. With spatially resolved EDXRD, ZVO formation is show to occur near the separator region first, eventually moving to the current collector region as discharge depth increases. ZHS formation, however, is found to originate from the current collector side of the positive electrode and then propagate through the porous electrode network. This study highlights the special benefits of the EDXRD method to gain mechanistic insight into structural evolution within the electrode and at its interface.

2.
Chem Rev ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36757020

ABSTRACT

Electrochemical energy storage systems, specifically lithium and lithium-ion batteries, are ubiquitous in contemporary society with the widespread deployment of portable electronic devices. Emerging storage applications such as integration of renewable energy generation and expanded adoption of electric vehicles present an array of functional demands. Critical to battery function are electron and ion transport as they determine the energy output of the battery under application conditions and what portion of the total energy contained in the battery can be utilized. This review considers electron and ion transport processes for active materials as well as positive and negative composite electrodes. Length and time scales over many orders of magnitude are relevant ranging from atomic arrangements of materials and short times for electron conduction to large format batteries and many years of operation. Characterization over this diversity of scales demands multiple methods to obtain a complete view of the transport processes involved. In addition, we offer a perspective on strategies for enabling rational design of electrodes, the role of continuum modeling, and the fundamental science needed for continued advancement of electrochemical energy storage systems with improved energy density, power, and lifetime.

3.
J Am Chem Soc ; 144(51): 23405-23420, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36513373

ABSTRACT

Aqueous Zn/MnO2 batteries (AZMOB) with mildly acidic electrolytes hold promise as potential green grid-level energy storage solutions for clean power generation. Mechanistic understanding is critical to advance capacity retention needed by the application but is complex due to the evolution of the cathode solid phases and the presence of dissolved manganese in the electrolyte due to a dissolution-deposition redox process. This work introduces operando multiphase extended X-ray absorption fine structure (EXAFS) analysis enabling simultaneous characterization of both aqueous and solid phases involved in the Mn redox reactions. The methodology was successfully conducted in multiple electrolytes (ZnSO4, Zn(CF3SO3)2, and Zn(CH3COO)2) revealing similar manganese coordination environments but quantitative differences in distribution of Mnn+ species in the solid and solution phases. Complementary Raman spectroscopy was utilized to identify the less crystalline Mn-containing products formed under charge at the cathodes. This was further augmented by transmission electron microscopy (TEM) to reveal the morphology and surface condition of the deposited solids. The results demonstrate an effective approach for bulk-level characterization of poorly crystalline multiphase solids while simultaneously gaining insight into the dissolved transition-metal species in solution. This work provides demonstration of a useful approach toward gaining insight into complex electrochemical mechanisms where both solid state and dissolved active materials are important contributors to redox activity.

4.
ACS Appl Mater Interfaces ; 14(18): 20404-20417, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35358380

ABSTRACT

Silicon (Si) is a promising high-capacity material for lithium-ion batteries; however, its limited reversibility hinders commercial adoption. Approaches such as particle and crystallite size reduction, introduction of conductive carbon, and use of different electrolyte solvents have been explored to overcome these electrochemical limitations. Herein, operando isothermal microcalorimetry (IMC) is used to probe the influence of silicon particle size, electrode composition, and electrolyte additives fluoroethylene carbonate and vinylene carbonate on the heat flow during silicon lithiation. The IMC data are complemented by X-ray photoelectron and Raman spectroscopies to elucidate differences in solid electrolyte interphase (SEI) composition. Nanosized (∼50 nm, n-Si) and micrometer-sized (∼4 µm, µ-Si) silicon electrodes are formulated with and without amorphous carbon and electrochemically lithiated in ethylene carbonate (EC), fluoroethylene carbonate (FEC), or vinylene carbonate (VC) based electrolytes. Notably, n-Si electrodes generate 53-61% more normalized heat relative to their µ-Si counterparts, consistent with increased surface area and electrode/electrolyte reactivity. Introduction of amorphous carbon significantly alters the heat flow profile where multiple exothermic peaks and increased normalized heat dissipation are observed for all electrolyte types. Notably, the VC-containing electrolyte demonstrates the greatest normalized heat dissipation of the electrode compositions tested showing as much as a 50% increase compared to the EC or FEC counterparts. The results are relevant to the understanding of silicon negative electrode function in the presence of electrolyte additives and provide insight relative to silicon containing cell reactivity and safety.

5.
ACS Phys Chem Au ; 2(4): 331-345, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36855414

ABSTRACT

This study thoroughly investigated the synthesis of not only 4 triply-doped metal oxides but also 5 singly-doped analogues of Li4Ti5O12 for electrochemical applications. In terms of synthetic novelty, the triply-doped materials were fabricated using a relatively facile hydrothermal method for the first-time, involving the simultaneous substitution of Ca for the Li site, Ln (i.e., Dy, Y, or Gd) for the Ti site, and Cl for the O site. Based on XRD, SEM, and HRTEM-EDS measurements, the resulting materials, incorporating a relatively homogeneous and uniform dispersion of both the single and triple dopants, exhibited a micron-scale flower-like morphology that remained apparently undamaged by the doping process. Crucially, the surface chemistry of all of the samples was probed using XPS in order to analyze any nuanced changes associated with either the various different lanthanide dopants or the identity of the metal precursor types involved. In the latter case, it was observed that the use of a nitrate salt precursor versus that of a chloride salt enabled not only a higher lanthanide incorporation but also the potential for favorable N-doping, all of which promoted a concomitant increase in conductivity due to a perceptible increase in Ti3+ content. In terms of the choice of lanthanide system, it was observed via CV analysis that dopant incorporation generally (albeit with some notable exceptions, especially with Y-based materials) led to the formation of higher amounts of Ti3+ species within both the singly and triply-doped materials, which consequentially led to the potential for increased diffusivity and higher mobility of Li+ species with the possibility for enabling greater capacity within these classes of metal oxides.

6.
ACS Appl Mater Interfaces ; 13(50): 59937-59949, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34898172

ABSTRACT

Hollandite, α-MnO2, is of interest as a prospective cathode material for hydrated zinc-ion batteries (ZIBs); however, the mechanistic understanding of the discharge process remains limited. Herein, a systematic study on the initial discharge of an α-MnO2 cathode under a hydrated environment was reported using density functional theory (DFT) in combination with complementary experiments, where the DFT predictions well described the experimental measurements on discharge voltages and manganese oxidation states. According to the DFT calculations, both protons (H+) and zinc ions (Zn2+) contribute to the discharging potentials of α-MnO2 observed experimentally, where the presence of water plays an essential role during the process. This study provides valuable insights into the mechanistic understanding of the discharge of α-MnO2 in hydrated ZIBs, emphasizing the crucial interplay among the H2O molecules, the intercalated Zn2+ or H+ ions, and the Mn4+ ions on the tunnel wall to enhance the stability of discharged states and, thus, the electrochemical performances in hydrated ZIBs.

7.
ACS Cent Sci ; 7(10): 1676-1687, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729411

ABSTRACT

Aqueous electrochemical systems suffer from a low energy density due to a small voltage window of water (1.23 V). Using thicker electrodes to increase the energy density and highly concentrated "water-in-salt" (WIS) electrolytes to extend the voltage range can be a promising solution. However, thicker electrodes produce longer diffusion pathways across the electrode. The highly concentrated salts in WIS electrolytes alter the physicochemical properties which determine the transport behaviors of electrolytes. Understanding how these factors interplay to drive complex transport phenomena in WIS batteries with thick electrodes via deterministic analysis on the rate-limiting factors and kinetics is critical to enhance the rate-performance in these batteries. In this work, a multimodal approach-Raman tomography, operando X-ray diffraction refinement, and synchrotron X-ray 3D spectroscopic imaging-was used to investigate the chemical heterogeneity in LiV3O8-LiMn2O4 WIS batteries with thick porous electrodes cycled under different rates. The multimodal results indicate that the ionic diffusion in the electrolyte is the primary rate-limiting factor. This study highlights the importance of fundamentally understanding the electrochemically coupled transport phenomena in determining the rate-limiting factor of thick porous WIS batteries, thus leading to a design strategy for 3D morphology of thick electrodes for high-rate-performance aqueous batteries.

8.
Inorg Chem ; 60(14): 10398-10414, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34236171

ABSTRACT

A series of V-substituted α-MnO2 (KxMn8-yVyO16·nH2O, y = 0, 0.2, 0.34, 0.75) samples were successfully synthesized without crystalline or amorphous impurities, as evidenced by X-ray diffraction (XRD) and Raman spectroscopy. Transmission electron microscopy (TEM) revealed a morphological evolution from nanorods to nanoplatelets as V-substitution increased, while electron-energy loss spectroscopy (EELS) confirmed uniform distribution of vanadium within the materials. Rietveld refinement of synchrotron XRD showed an increase in bond lengths and a larger range of bond angles with increasing V-substitution. X-ray absorption spectroscopy (XAS) of the as-prepared materials revealed the V valence to be >4+ and the Mn valence to decrease with increasing V content. Upon electrochemical lithiation, increasing amounts of V were found to preserve the Mn-Mnedge relationship at higher depths of discharge, indicating enhanced structural stability. Electrochemical testing showed the y = 0.75 V-substituted sample to deliver the highest capacity and capacity retention after 50 cycles. The experimental findings were consistent with the predictions of density functional theory (DFT), where the V centers impart structural stability to the manganese oxide framework upon lithiation. The enhanced electrochemistry of the y = 0.75 V-substituted sample is also attributed to its smaller crystallite size in the form of a nanoplatelet morphology, which promotes facile ion access via reduced Li-ion diffusion path lengths.

9.
Phys Chem Chem Phys ; 23(14): 8607-8617, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33876022

ABSTRACT

The electrochemical charge storage of sodium vanadate (NaV3O8 or NVO) cathodes in aqueous Zn-ion batteries has been hypothesized to be influenced by the inclusion of structural water for facilitating ion transfer in the material. Materials properties considered important (morphology, crystallite and particle size, surface area) are systematically studied herein through investigation of two NVO materials, NaV3O8·0.34H2O [NVO(300)] and NaV3O8·0.05H2O [NVO(500)], with different water content, acicular morphologies with different size and surface area achieved via post-synthesis heat treatment. The electrochemistry of the two materials was evaluated in aqueous Zn-ion cells with 2 M ZnSO4 electrolyte using cyclic voltammetry, galvanostatic cycling, and rate capability testing. The thinner NVO(300) nanobelts (0.13 µm) demonstrate greater specific capacities and higher effective diffusion coefficients relative to the thicker NVO(500) nanorods. Notably however, while cells containing NVO(500) deliver lower specific capacity, they demonstrate enhanced capacity retention with cycling. The structural changes accompanying oxidation and reduction are elucidated via ex situ X-ray diffraction, transmission electron microscopy, and operando V K-edge X-ray absorption spectroscopy (XAS), where NVO material properties are shown to influence the ion insertion. Operando XAS verified that electron transfer corresponds directly to change in vanadium oxidation state, affirming vanadium redox as the governing electrochemical process.

10.
Phys Chem Chem Phys ; 23(1): 139-150, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33025989

ABSTRACT

The phase distribution of lithiated LVO in thick (∼500 µm) porous electrodes (TPEs) designed to facilitate both ion and electron transport was determined using synchrotron-based operando energy dispersive X-ray diffraction (EDXRD). Probing 3 positions in the TPE while cycling at a 1C rate revealed a homogeneous phase transition across the thickness of the electrode at the 1st and 95th cycles. Continuum modelling indicated uniform lithiation across the TPE in agreement with the EDXRD results and ascribed decreasing accessible active material to be the cause of loss in delivered capacity between the 1st and 95th cycles. The model was supported by the observation of significant particle fracture by SEM consistent with loss of electrical contact. Overall, the combination of operando EDXRD, continuum modeling, and ex situ measurements enabled a deeper understanding of lithium vanadium oxide transport properties under high rate extended cycling within a thick highly porous electrode architecture.

11.
Sci Adv ; 6(10): eaay7129, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32181349

ABSTRACT

Water-in-salt (WIS) electrolytes provide a promising path toward aqueous battery systems with enlarged operating voltage windows for better safety and environmental sustainability. In this work, a new electrode couple, LiV3O8-LiMn2O4, for aqueous Li-ion batteries is investigated to understand the mechanism by which the WIS electrolyte improves the cycling stability at an extended voltage window. Operando synchrotron transmission x-ray microscopy on the LiMn2O4 cathode reveals that the WIS electrolyte suppresses the mechanical damage to the electrode network and dissolution of the electrode particles, in addition to delaying the water decomposition process. Because the viscosity of WIS is notably higher, the reaction heterogeneity of the electrodes is quantified with x-ray absorption spectroscopic imaging, visualizing the kinetic limitations of the WIS electrolyte. This work furthers the mechanistic understanding of electrode-WIS electrolyte interactions and paves the way to explore the strategy to mitigate their possible kinetic limitations in three-dimensional architectures.

12.
Adv Mater ; 32(10): e1907941, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31997413

ABSTRACT

2D nanosheets have been widely explored as electrode materials owing to their extraordinarily high electrochemical activity and fast solid-state diffusion. However, the scalable electrode fabrication based on this type of material usually suffers from severe performance losses due to restricted ion-transport kinetics in a large thickness. Here, a novel strategy based on evaporation-induced assembly to enable directional ion transport via forming vertically aligned nanosheets is reported. The orientational ordering is achieved by a rapid evaporation of mixed solvents during the electrode fabrication process. Compared with conventional drop-cast electrodes, which exhibit a random arrangement of the nanosheets and obvious decrease of rate performance with increasing thickness, the electrode based on the vertically aligned nanosheets is able to retain the original high rate capability even at high mass loadings and electrode thickness. Combined electrochemical and structural characterization reveals the electrode composed of orientation-controlled nanosheets to possess lower charge-transfer resistances, leading to more complete phase transformation in the active material.

13.
ChemSusChem ; 13(6): 1517-1528, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31705599

ABSTRACT

One of the inherent challenges with Li-S batteries is polysulfide dissolution, in which soluble polysulfide species can contribute to the active material loss from the cathode and undergo shuttling reactions inhibiting the ability to effectively charge the battery. Prior theoretical studies have proposed the possible benefit of defective 2 D MoS2 materials as polysulfide trapping agents. Herein the synthesis and thorough characterization of hydrothermally prepared MoS2 nanosheets that vary in layer number, morphology, lateral size, and defect content are reported. The materials were incorporated into composite sulfur-based cathodes and studied in Li-S batteries with environmentally benign ether-based electrolytes. Through directed synthesis of the MoS2 additive, the relationship between synthetically induced defects in 2 D MoS2 materials and resultant electrochemistry was elucidated and described.

14.
Nano Lett ; 19(11): 8255-8261, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31661622

ABSTRACT

Developing scalable energy storage systems with high energy and power densities is essential to meeting the ever-growing portable electronics and electric vehicle markets, which calls for development of thick electrode designs to improve the active material loading and greatly enhance the overall energy density. However, rate capabilities in lithium-ion batteries usually fall off rapidly with increasing electrode thickness due to hindered ionic transport kinetics, which is especially the issue for conversion-based electroactive materials. To alleviate the transport constrains, rational design of three-dimensional porous electrodes with aligned channels is critically needed. Herein, magnetite (Fe3O4) with high theoretical capacity is employed as a model material, and with the assistance of micrometer-sized graphine oxide (GO) sheets, aligned Fe3O4/GO (AGF) electrodes with well-defined ionic transport channels are formed through a facile ice-templating method. The as-fabricated AGF electrodes exhibit excellent rate capacity compared with conventional slurry-casted electrodes with an areal capacity of ∼3.6 mAh·cm-2 under 10 mA·cm-2. Furthermore, clear evidence provided by galvanostatic charge-discharge profiles, cyclic voltammetry, and symmetric cell electrochemical impedance spectroscopy confirms the facile ionic transport kinetics in this proposed design.

15.
ACS Appl Mater Interfaces ; 11(41): 37567-37577, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31550121

ABSTRACT

Silicon offers high theoretical capacity as a negative electrode material for lithium-ion batteries; however, high irreversible capacity upon initial cycling and poor cycle life have limited commercial adoption. Herein, we report an operando isothermal microcalorimetry (IMC) study of a model system containing lithium metal and silicon composite film electrodes during the first two cycles of (de)lithiation. The total heat flow data are analyzed in terms of polarization, entropic, and parasitic heat flow contributions to quantify and determine the onset of parasitic reactions. These parasitic reactions, which include solid-electrolyte interphase formation, contribute to electrochemical irreversibility. Cycle 1 lithiation demonstrates the highest thermal energy output at 1509 mWh/g, compared to cycle 1 delithiation and cycle 2. To complement the calorimetry, operando X-ray diffraction is used to track the phase evolution of silicon. During cycle 1 lithiation, crystalline Si undergoes transformation to amorphous lithiated silicon and ultimately to crystalline Li15Si4. The solid-state amorphization process is correlated to a decrease in entropic heat flow, suggesting that heat associated with the amorphization contributes significantly to the entropic heat flow term. This study effectively uses IMC to probe the parasitic reactions that occur during lithiation of a silicon electrode, demonstrating an approach that can be broadly applied to quantify parasitic reactions in other complex systems.

16.
ACS Appl Mater Interfaces ; 11(22): 19920-19932, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31042346

ABSTRACT

Fe3O4 nanoparticles (NPs) with an average size of 8-10 nm have been successfully functionalized with various surface-treatment agents to serve as model systems for probing surface chemistry-dependent electrochemistry of the resulting electrodes. The surface-treatment agents used for the functionalization of Fe3O4 anode materials were systematically varied to include aromatic or aliphatic structures: 4-mercaptobenzoic acid, benzoic acid (BA), 3-mercaptopropionic acid, and propionic acid (PA). Both structural and electrochemical characterizations have been used to systematically correlate the electrode functionality with the corresponding surface chemistry. Surface treatment with ligands led to better Fe3O4 dispersion, especially with the aromatic ligands. Electrochemistry was impacted where the PA- and BA-treated Fe3O4 systems without the -SH group demonstrated a higher rate capability than their thiol-containing counterparts and the pristine Fe3O4. Specifically, the PA system delivered the highest capacity and cycling stability among all samples tested. Notably, the aromatic BA system outperformed the aliphatic PA counterpart during extended cycling under high current density, due to the improved charge transfer and ion transport kinetics as well as better dispersion of Fe3O4 NPs, induced by the conjugated system. Our surface engineering of the Fe3O4 electrode presented herein, highlights the importance of modifying the structure and chemistry of surface-treatment agents as a plausible means of enhancing the interfacial charge transfer within metal oxide composite electrodes without hampering the resulting tap density of the resulting electrode.

17.
ACS Appl Mater Interfaces ; 11(7): 7074-7086, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30676021

ABSTRACT

Magnetite, Fe3O4, holds significant interest as a Li-ion anode material because of its high theoretical capacity (926 mAh/g) associated with multiple electron transfers per cation center. Notably, both crystallite size and agglomeration influence ion transport. This report probes the effects of crystallite size (12 and 29 nm) and agglomeration on the reactions involved with the formation of the surface electrolyte interphase on Fe3O4. Isothermal microcalorimetry (IMC) was used to determine the parasitic heat evolved during lithiation by considering the total heat measured, cell polarization, and entropic contributions. Interestingly, the 29 nm Fe3O4-based electrodes produced more parasitic heat than the 12 nm samples (1346 vs 1155 J/g). This observation was explored using scanning electron microscopy (SEM) and X-ray fluorescence (XRF) mapping in conjunction with spatially resolved X-ray absorption spectroscopy (XAS). SEM imaging of the electrodes revealed more agglomerates for the 12 nm material, affirmed by XRF maps. Further, XAS results suggest that Li+ transport is more restricted for the smaller crystallite size (12 nm) material, attributed to its greater degree of agglomeration. These results rationalize the IMC data, where agglomerates of the 12 nm material limit solid electrolyte interphase formation and parasitic heat generation during lithiation of Fe3O4.

18.
Acc Chem Res ; 51(3): 575-582, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29457710

ABSTRACT

Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangle the contributions of distinct properties to the functional electrochemistry. This goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects, and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing. The structural motif most frequently used for insertion type electrodes is based on layered type structures where ion diffusion in two dimensions can be envisioned. However, lattice expansion and contraction associated with the ion movement and electron transfer as a result of repeated charge and discharge cycling can result in structural degradation and amorphization with accompanying loss of capacity. In contrast, tunnel type structures embody a more rigid framework where the inherent structural design can accommodate the presence of cations and often multiple cations. Of specific interest are manganese oxides as they can exhibit a tunneled structure, termed α-MnO2, and are an important class of nanomaterial in the fields of catalysis, adsorption-separation, and ion-exchange. The α-MnO2 structure has one-dimensional 2 × 2 tunnels formed by corner and edge sharing manganese octahedral [MnO6] units and can be readily substituted in the central tunnel by a variety of cations of varying size. Importantly, α-MnO2 materials possess a rich chemistry with significant synthetic versatility allowing deliberate synthetic control of structure, composition, crystallite size, and defect content. This Account considers the investigation of α-MnO2 tunnel type structures and their electrochemistry. Examination of the reported findings on this material family demonstrates that multiple physiochemical properties influence the electrochemistry. The retention of the parent structure during charge and discharge cycling, the material composition including the identity and content of the central cation, the surface condition including oxygen vacancies, and crystallite size have all been demonstrated to impact electrochemical function. The selection of the α-MnO2 family of materials as a model system and the ability to control the variables associated with the structural family affirm that full investigation of the mechanisms related to active materials in an electrochemical system demands concerted efforts in synthetic material property control and multimodal characterization, combined with theory and modeling. This then enables more complete understanding of the factors that must be controlled to achieve consistent and desirable outcomes.

19.
ACS Nano ; 12(4): 3126-3139, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29337526

ABSTRACT

A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe3O4 (sFe3O4) for uniform Li+ diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe3O4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe3O4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe3O4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe3O4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

20.
ACS Cent Sci ; 2(6): 380-7, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27413781

ABSTRACT

Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work (w) and minimize the generation of waste heat (q). Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale but rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4.

SELECTION OF CITATIONS
SEARCH DETAIL
...