Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38683636

ABSTRACT

Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V2O3) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin V2O3 films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement. By electrical and optical measurements, we demonstrate a dimensional confinement-induced metal-insulator transition in these ultrathin films. We shed light on the Mott-Hubbard nature of this transition, revealing a vanishing quasiparticle weight as demonstrated by photoemission spectroscopy. Furthermore, we prove that dimensional confinement acts as an effective out-of-plane stress. This highlights the structural component of correlated oxides in a confined architecture, while opening an avenue to control both in-plane and out-of-plane lattice components by epitaxial strain and confinement, respectively.

2.
Sci Rep ; 13(1): 11521, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37460596

ABSTRACT

Using spin-polarized first-principles calculations based on density functional theory, we study the stability, electronic properties and magnetic behavior induced by hole-doping of two-dimensional (2D) PbBr2 and HgBr2. Although inherently nonmagnetic, these materials can exhibit stable ferromagnetic order when hole-doped at densities above a few 1013 cm-2. We also examined the impact of intrinsic and extrinsic defects on inducing hole-doping and subsequent ferromagnetism. Our findings suggest that p-type doping can be achieved by Pb and Hg vacancies and Br antisites, but the latter behaves as deep acceptors. Among the possible dopants we considered, Li substituting Pb or Hg, and S replacing Br in 2D HgBr2, can produce shallow acceptor states near the valence band edges and potentially result in a stable ferromagnetic order in these 2D dibromides.

3.
Materials (Basel) ; 16(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837233

ABSTRACT

We study, using non-equilibrium Green's function simulations combined with first-principles density functional theory, the edge-state transport in two-dimensional topological insulators. We explore the impact of electron-phonon coupling on carrier transport through the protected states of two widely known topological insulators with different bulk gaps, namely stanene and bismuthene. We observe that the transport in a topological insulator with a small bulk gap (such as stanene) can be heavily affected by electron-phonon scattering, as the bulk states broaden into the bulk gap. In bismuthene with a larger bulk gap, however, a significantly higher immunity to electron-phonon scattering is observed. To mitigate the negative effects of a small bulk gap, finite-size effects are studied in stanene ribbons. The bulk gap increases in ultra-narrow stanene ribbons, but the transport results revealed no improvement in the dissipative case, as the states in the enlarged bulk gaps aren't sufficiently localized. To investigate an application, we also used topological insulator ribbons as a material for field-effect transistors with side gates imposing a lateral electric field. Our results demonstrate that the lateral electric field could offer another avenue to manipulate the edge states and even open a gap in stanene ribbons, leading to an ION/IOFF of 28 in the ballistic case. These results shed light on the opportunities and challenges in the design of topological insulator field-effect transistors.

4.
Nanoscale ; 14(34): 12437-12446, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-35979747

ABSTRACT

The adsorption and desorption kinetics of molecules is of significant fundamental and applied interest. In this paper, we present a new method to quantify the energy barriers for the adsorption and desorption of gas molecules on few-atom clusters, by exploiting reaction induced changes of the doping level of a graphene substrate. The method is illustrated for oxygen adsorption on Au3 clusters. The gold clusters were deposited on a graphene field effect transistor and exposed to O2. From the change in graphene's electronic properties during adsorption, the energy barrier for the adsorption of O2 on Au3 is estimated to be 0.45 eV. Electric current pulses increase the temperature of the graphene strip in a controlled way and provide the required thermal energy for oxygen desorption. The oxygen binding energy on Au3/graphene is found to be 1.03 eV and the activation entropy is 1.4 meV K-1. The experimental values are compared and interpreted on the basis of density functional theory calculations of the adsorption barrier, the binding energy and the activation entropy. The large value of the activation entropy is explained by the hindering effect that the adsorbed O2 has on the fluxional motion of the Au3 cluster.

5.
J Phys Condens Matter ; 34(40)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35856847

ABSTRACT

The interaction between Aun(n= 1-6) clusters and graphene is studied using first-principles simulations, based on density functional theory. The computed binding energy between Aunand graphene depends on the number of atoms in the cluster and lies between -0.6 eV and -1.7 eV, suggesting (weak) chemisorption of the clusters on graphene, rather than physisorption. Overall, the electronic properties, spin-orbit interaction and spin texture, as well as the transport properties of graphene strongly depend on the precise size of the Aunclusters. Doping of graphene is predicted for clusters with an odd number of Au atoms, due to overlap between Ausand carbonpzstates close to the Fermi level. On the other hand, there is no charge transfer between even size Au clusters and graphene, but a gap is formed at the Dirac cone, due to the breaking of the pseudo spin inversion symmetry of graphene's lattice. The adsorbed Aunclusters induce spin-orbit interactions as well as spin and pseudo spin interactions in graphene, as indicated by the splitting of the electronic band structure. A hedgehog spin texture is also predicted for adsorbed clusters with an even number of Au atoms. Ballistic transport simulations are performed to study the influence of the adsorbed clusters on graphene's electronic transport properties. The influence of the cluster on the electron transmission across the structure depends on the mixing of the valence orbitals in the transport energy window. In the specific case of the Au3/graphene system, the adsorbed clusters reduce the transmission and the conductance of graphene. The Au3clusters act as 'scattering centers' for charge carriers, in agreement with recent experimental studies.

6.
ACS Appl Mater Interfaces ; 13(26): 30941-30949, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34157228

ABSTRACT

Complementary to the development of highly three-dimensional (3D) integrated circuits in the continuation of Moore's law, there has been a growing interest in new 3D deformation strategies to improve the device performance. To continue this search for new 3D deformation techniques, it is essential to explore beforehand, using computational predictive methods, which strain tensor leads to the desired properties. In this work, we study germanium (Ge) under an isotropic 3D strain on the basis of first-principles methods. The transport and optical properties are studied by a fully ab initio Boltzmann transport equation and many-body Bethe-Salpeter equation (BSE) approach, respectively. Our findings show that a direct band gap in Ge could be realized with only 0.70% triaxial tensile strain (negative pressure) and without the challenges associated with Sn doping. At the same time, a significant increase in the refractive index and carrier mobility, particularly for electrons, is observed. These results demonstrate that there is a huge potential in exploring the 3D deformation space for semiconductors, and potentially many other materials, to optimize their properties.

7.
J Phys Condens Matter ; 32(41): 413002, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32413887

ABSTRACT

The article overviews experimental results obtained by applying internal photoemission (IPE) spectroscopy methods to characterize electron states in single- or few-monolayer thick two-dimensional materials and at their interfaces. Several conducting (graphene) and semiconducting (transitional metal dichalcogenides MoS2, WS2, MoSe2, and WSe2) films on top of thermal SiO2 have been analyzed by IPE, which reveals significant sensitivity of interface band offsets and barriers to the details of the material and interface fabrication, indicating violation of the Schottky-Mott rule. This variability is associated with charges and dipoles formed at the interfaces with van der Waals bonding as opposed to the chemically bonded interfaces of three-dimensional semiconductors and metals. Chemical modification of the underlying SiO2 surface is shown to be a significant factor, affecting interface barriers due to violation of the interface electroneutrality.

8.
ACS Appl Mater Interfaces ; 12(24): 27508-27517, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32447952

ABSTRACT

Layered materials held together by weak van der Waals (vdW) interactions are a promising class of materials in the field of nanotechnology. Besides the potential for single layers, stacking of various vdW layers becomes even more promising since unique properties can hence be precisely engineered. The synthesis of stacked vdW layers, however, remains to date, hardly understood. Therefore, in this work, the vdW epitaxy of transition metal dichalcogenides (TMDs) on single-crystalline TMD templates is investigated in depth. It is demonstrated that the role of lattice mismatch is insignificant. More importantly is the role of surface energy, calculated using density functional theory, which plays an essential role in the activation energy for adatom diffusion, hence nucleation density. This in turn correlates with defect density since the stacking sequence in vdW epitaxy is generally poorly controlled. Moreover, the vapor pressure of the transition metal is also found to correlate with adatom diffusion. Consequently, the proposed study enables important and new insight in the vdW epitaxy of multilayer 2D homo-/heterostructures.

9.
RSC Adv ; 10(2): 952-957, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-35494467

ABSTRACT

Using first principles calculations based on density functional theory, we study the impact of hole doping on the magnetic and electronic properties of two dimensional PtS2. Although 2D PtS2 is intrinsically non-magnetic, a stable ferromagnetic phase is found for a wide range of hole densities, owing to the so-called Stoner instabilities. Besides spontaneous magnetization, half-metallicity is additionally observed. The majority and minority spin states exhibit insulating and metallic nature, respectively, allowing a fully polarized spin transport in 2D PtS2. Lastly, hole doping resulting from substitutional doping is investigated. For As-doped PtS2 shallow spin-polarized states close to the valence band edge are observed, and among all studied group-V dopants, As replacing S, is the most promising one to induce p-type conductivity and a subsequent ferromagnetic order in PtS2.

10.
Faraday Discuss ; 213(0): 67-85, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30346458

ABSTRACT

This study is focused on Conductive Bridging Random Access Memory (CBRAM) devices based on chalcogenide electrolyte and Cu-supply materials, and aims at identifying the key material parameters controlling memory properties. The CBRAM devices investigated are integrated on CMOS select transistors, and are constituted by either Ge-Se or Ge-Te electrolyte layers of various compositions combined with a Cu2GeTe3 active chalcogenide electrode. By means of extensive physical and electrical characterization, we show for a given electrolyte system that slower write is obtained for a denser electrolyte layer, which is directly correlated with a lower atomic percentage of the chalcogen element in the layer. We also evidence that the use of Ge-Se electrolyte results in larger write energy (voltage and time), however with improved state retention properties than for Ge-Te electrolyte materials. We associate these results with the stronger chemical bonding of Cu with Se, resulting both in a stabilized Cu filament and a slower Cu cation motion. More robust processing thermal stability is also observed for Ge-Se compared to Ge-Te compounds, allowing more flexibility in the integration flow design.

11.
ACS Appl Mater Interfaces ; 9(8): 7725-7734, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28192656

ABSTRACT

Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D-based nanoelectronic devices.

12.
Nat Mater ; 16(2): 163-169, 2017 02.
Article in English | MEDLINE | ID: mdl-28092688

ABSTRACT

Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.

13.
Adv Mater ; 26(13): 2096-101, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24347540

ABSTRACT

The structural and electronic properties of a Si nanosheet (NS) grown onto a MoS2 substrate by means of molecular beam epitaxy are assessed. Epitaxially grown Si is shown to adapt to the trigonal prismatic surface lattice of MoS2 by forming two-dimensional nanodomains. The Si layer structure is distinguished from the underlying MoS2 surface structure. The local electronic properties of the Si nanosheet are dictated by the atomistic arrangement of the layer and unlike the MoS2 hosting substrate they are qualified by a gap-less density of states.

SELECTION OF CITATIONS
SEARCH DETAIL
...