Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 17(12): e202301805, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38361160

ABSTRACT

As a crucial strategy towards a sustainable chemical industry, the direct synthesis of dimethyl carbonate (DMC) from renewable carbon dioxide (CO2) and methanol (MeOH) is studied using CeO2 nanoparticles modified with 1-butyl-3-methylimidazolium hydrogen carbonate ([BMIm][HCO3]) devoid of stoichiometric dehydrating agents. The synthesized CeO2@[BMIm][HCO3] catalyst having high thermal stability harnesses the unique physicochemical properties of CeO2 and the ionic liquid to exhibit a DMC yield of 10.4 % and a methanol conversion of 16.1 % at optimal conditions (pressure of CO2=5 MPa; temperature=130 °C). The catalytic behavior of CeO2@[BMIm][HCO3] studied with a detailed XRD, XPS, CO2 and NH3-TPD, Raman spectroscopy, TGA, FTIR, SEM and TEM suggests that the synergy between the two catalytic components originating from an increased surface oxygen vacancies boosts the overall catalytic performance. After several recycling tests, the catalyst demonstrated no significant reduction in DMC yield and methanol conversion. This platform is an attractive approach to synthesize thermally stable nanoparticle@ionic liquid that retains and merges the physical attributes of both materials for producing useful bulk chemicals from readily available chemical resources.

2.
ACS Nano ; 16(9): 13900-13910, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35775975

ABSTRACT

PdSe2 has a layered structure with an unusual, puckered Cairo pentagonal tiling. Its atomic bond configuration features planar 4-fold-coordinated Pd atoms and intralayer Se-Se bonds that enable polymorphic phases with distinct electronic and quantum properties, especially when atomically thin. PdSe2 is conventionally orthorhombic, and direct synthesis of its metastable polymorphic phases is still a challenge. Here, we report an ambient-pressure chemical vapor deposition approach to synthesize metastable monoclinic PdSe2. Monoclinic PdSe2 is shown to be synthesized selectively under Se-deficient conditions that induce Se vacancies. These defects are shown by first-principles density functional theory calculations to reduce the free energy of the metastable monoclinic phase, thereby stabilizing it during synthesis. The structure and composition of the monoclinic PdSe2 crystals are identified and characterized by scanning transmission electron microscopy imaging, convergent beam electron diffraction, and electron energy loss spectroscopy. Polarized Raman spectroscopy of the monoclinic PdSe2 flakes reveals their strong in-plane optical anisotropy. Electrical transport measurements show that the monoclinic PdSe2 exhibits n-type charge carrier conduction with electron mobilities up to ∼298 cm2 V-1 s-1 and a strong in-plane electron mobility anisotropy of ∼1.9. The defect-mediated growth pathway identified in this work is promising for phase-selective direct synthesis of other 2D transition metal dichalcogenides.

SELECTION OF CITATIONS
SEARCH DETAIL
...