Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 15: 749705, 2021.
Article in English | MEDLINE | ID: mdl-34955714

ABSTRACT

Deep Brain Stimulation (DBS) is an important tool in the treatment of pharmacologically resistant neurological movement disorders such as essential tremor (ET) and Parkinson's disease (PD). However, the open-loop design of current systems may be holding back the true potential of invasive neuromodulation. In the last decade we have seen an explosion of activity in the use of feedback to "close the loop" on neuromodulation in the form of adaptive DBS (aDBS) systems that can respond to the patient's therapeutic needs. In this paper we summarize the accomplishments of a 5-year study at the University of Washington in the use of neural feedback from an electrocorticography strip placed over the sensorimotor cortex. We document our progress from an initial proof of hardware all the way to a fully implanted adaptive stimulation system that leverages machine-learning approaches to simplify the programming process. In certain cases, our systems out-performed current open-loop approaches in both power consumption and symptom suppression. Throughout this effort, we collaborated with neuroethicists to capture patient experiences and take them into account whilst developing ethical aDBS approaches. Based on our results we identify several key areas for future work. "Graded" aDBS will allow the system to smoothly tune the stimulation level to symptom severity, and frequent automatic calibration of the algorithm will allow aDBS to adapt to the time-varying dynamics of the disease without additional input from a clinician. Additionally, robust computational models of the pathophysiology of ET will allow stimulation to be optimized to the nuances of an individual patient's symptoms. We also outline the unique advantages of using cortical electrodes for control and the remaining hardware limitations that need to be overcome to facilitate further development in this field. Over the course of this study we have verified the potential of fully-implanted, cortically driven aDBS as a feasibly translatable treatment for pharmacologically resistant ET.

2.
Front Hum Neurosci ; 15: 590251, 2021.
Article in English | MEDLINE | ID: mdl-33776665

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective tool for treating medically refractory Parkinson's disease (PD), but its neural mechanisms remain debated. Previous work has demonstrated that STN DBS results in evoked potentials (EPs) in the primary motor cortex (M1), suggesting that modulation of cortical physiology may be involved in its therapeutic effects. Due to technical challenges presented by high-amplitude DBS artifacts, these EPs are often measured in response to low-frequency stimulation, which is generally ineffective at PD symptom management. This study aims to characterize STN-to-cortex EPs seen during clinically relevant high-frequency STN DBS for PD. Intraoperatively, we applied STN DBS to 6 PD patients while recording electrocorticography (ECoG) from an electrode strip over the ipsilateral central sulcus. Using recently published techniques, we removed large stimulation artifacts to enable quantification of STN-to-cortex EPs. Two cortical EPs were observed - one synchronized with DBS onset and persisting during ongoing stimulation, and one immediately following DBS offset, here termed the "start" and the "end" EPs respectively. The start EP is, to our knowledge, the first long-latency cortical EP reported during ongoing high-frequency DBS. The start and end EPs differ in magnitude (p < 0.05) and latency (p < 0.001), and the end, but not the start, EP magnitude has a significant relationship (p < 0.001, adjusted for random effects of subject) to ongoing high gamma (80-150 Hz) power during the EP. These contrasts may suggest mechanistic or circuit differences in EP production during the two time periods. This represents a potential framework for relating DBS clinical efficacy to the effects of a variety of stimulation parameters on EPs.

3.
Mov Disord ; 35(12): 2348-2353, 2020 12.
Article in English | MEDLINE | ID: mdl-32914888

ABSTRACT

BACKGROUND: Converging literatures suggest that deep brain stimulation (DBS) in Parkinson's disease affects multiple circuit mechanisms. One proposed mechanism is the normalization of primary motor cortex (M1) pathophysiology via effects on the hyperdirect pathway. OBJECTIVES: We hypothesized that DBS would reduce the current intensity necessary to modulate motor-evoked potentials from focally applied direct cortical stimulation (DCS). METHODS: Intraoperative subthalamic DBS, DCS, and preoperative diffusion tensor imaging data were acquired in 8 patients with Parkinson's disease. RESULTS: In 7 of 8 patients, DBS significantly reduced the M1 DCS current intensity required to elicit motor-evoked potentials. This neuromodulation was specific to select DBS bipolar configurations. In addition, the volume of activated tissue models of these configurations were significantly associated with overlap of the hyperdirect pathway. CONCLUSIONS: DBS reduces the current necessary to elicit a motor-evoked potential using DCS. This supports a circuit mechanism of DBS effectiveness, potentially involving the hyperdirect pathway that speculatively may underlie reductions in hypokinetic abnormalities in Parkinson's disease. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Subthalamic Nucleus , Diffusion Tensor Imaging , Humans , Parkinson Disease/therapy
4.
J Neural Eng ; 16(1): 016004, 2019 02.
Article in English | MEDLINE | ID: mdl-30444218

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) is a well-established treatment for essential tremor, but may not be an optimal therapy, as it is always on, regardless of symptoms. A closed-loop (CL) DBS, which uses a biosignal to determine when stimulation should be given, may be better. Cortical activity is a promising biosignal for use in a closed-loop system because it contains features that are correlated with pathological and normal movements. However, neural signals are different across individuals, making it difficult to create a 'one size fits all' closed-loop system. APPROACH: We used machine learning to create a patient-specific, CL DBS system. In this system, binary classifiers are used to extract patient-specific features from cortical signals and determine when volitional, tremor-evoking movement is occurring to alter stimulation voltage in real time. MAIN RESULTS: This system is able to deliver stimulation up to 87%-100% of the time that subjects are moving. Additionally, we show that the therapeutic effect of the system is at least as good as that of current, continuous-stimulation paradigms. SIGNIFICANCE: These findings demonstrate the promise of CL DBS therapy and highlight the importance of using subject-specific models in these systems.


Subject(s)
Deep Brain Stimulation/methods , Essential Tremor/physiopathology , Essential Tremor/therapy , Machine Learning , Psychomotor Performance/physiology , Volition/physiology , Aged , Aged, 80 and over , Essential Tremor/psychology , Humans , Male , Middle Aged , Pilot Projects
5.
Article in English | MEDLINE | ID: mdl-26737029

ABSTRACT

Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.


Subject(s)
Deep Brain Stimulation/methods , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Algorithms , Humans , Reproducibility of Results , Signal Processing, Computer-Assisted , Tremor
SELECTION OF CITATIONS
SEARCH DETAIL
...