Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Adv Exp Med Biol ; 915: 81-97, 2016.
Article in English | MEDLINE | ID: mdl-27193539

ABSTRACT

The Type I DNA restriction-modification (RM) systems of Staphylococcus aureus are known to act as a significant barrier to horizontal gene transfer between S. aureus strains belonging to different clonal complexes. The livestock-associated clonal complexes CC133/771 and CC398 contain Type I RM systems not found in human MRSA strains as yet but at some point transfer will occur. When this does take place, horizontal gene transfer of resistance will happen more easily between these strains. The reservoir of antibiotic resistance, virulence and host-adaptation genes present in livestock-associated MRSA will then potentially contribute to the development of newly evolving MRSA clones. The target sites recognised by the Type I RM systems of CC133/771 and CC398 were identified as CAG(N)5RTGA and ACC(N)5RTGA, respectively. Assuming that these enzymes recognise the methylation state of adenine, the underlined A and T bases indicate the unique positions of methylation. Target methylation points for enzymes from CC1 were also identified. The methylation points for CC1-1 are CCAY(N)5TTAA and those for CC1-2 are CCAY(N)6 TGT with the underline indicating the adenine methylation site thus clearing up the ambiguity noted previously (Roberts et al. 2013, Nucleic Acids Res 41:7472-7484) for the half sites containing two adenine bases.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Deoxyribonucleases, Type I Site-Specific/metabolism , Gene Transfer, Horizontal , Livestock/microbiology , Methicillin-Resistant Staphylococcus aureus/enzymology , Milk/microbiology , Staphylococcal Infections/microbiology , Adenine/metabolism , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Base Sequence , Cattle , DNA Methylation , DNA, Bacterial/genetics , Deoxyribonucleases, Type I Site-Specific/genetics , Drug Resistance, Bacterial/genetics , Genotype , Host-Pathogen Interactions , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Molecular Sequence Data , Phenotype , Staphylococcal Infections/drug therapy , Staphylococcal Infections/transmission , Substrate Specificity , Virulence/genetics
3.
Nucleic Acids Res ; 41(15): 7472-84, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23771140

ABSTRACT

A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.


Subject(s)
DNA Restriction-Modification Enzymes/metabolism , Deoxyribonucleases, Type I Site-Specific/metabolism , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Computational Biology/methods , DNA Cleavage , DNA Restriction-Modification Enzymes/genetics , DNA, Bacterial/genetics , Deoxyribonucleases, Type I Site-Specific/genetics , Gene Library , Methicillin-Resistant Staphylococcus aureus/enzymology , Open Reading Frames , Plasmids/genetics , Plasmids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...