Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 175(1): 37-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24549937

ABSTRACT

The relationships of 16 leaf traits and their plasticity with the dependence of tree species on gaps for regeneration (gap association index; GAI) were examined in a Neotropical rainforest. Young saplings of 24 species with varying GAI were grown under a closed canopy, in a medium-sized and in a large gap, thus capturing the full range of plasticity with respect to canopy openness. Structural, biomechanical, chemical and photosynthetic traits were measured. At the chloroplast level, the chlorophyll a/b ratio and plasticity in this variable were not related to the GAI. However, plasticity in total carotenoids per unit chlorophyll was larger in shade-tolerant species. At the leaf level, leaf mass per unit area (LMA) decreased with the GAI under the closed canopy and in the medium gap, but did not significantly decrease with the GAI in the large gap. This was a reflection of the larger plasticity in LMA and leaf thickness of gap-dependent species. The well-known opposite trends in LMA for adaptation and acclimation to high irradiance in evergreen tropical trees were thus not invariably found. Although leaf strength was dependent on LMA and thickness, plasticity in this trait was not related to the GAI. Photosynthetic capacity expressed on each basis increased with the GAI, but the large plasticity in these traits was not clearly related to the GAI. Although gap-dependent species tended to have a greater plasticity overall, as evident from a principle component analysis, leaf traits of gap-dependent species are thus not invariably more phenotypically plastic.


Subject(s)
Light , Plant Leaves/physiology , Trees/physiology , Acclimatization , Chlorophyll/analysis , Chloroplasts , Guyana , Phenotype , Photosynthesis
2.
Oecologia ; 169(1): 33-45, 2012 May.
Article in English | MEDLINE | ID: mdl-22038060

ABSTRACT

Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species' gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.


Subject(s)
Sunlight , Trees/growth & development , Chlorophyll/metabolism , Chloroplasts/metabolism , Guyana , Nitrogen/metabolism , Photosynthesis , Plant Leaves/growth & development , Plant Leaves/physiology , Trees/anatomy & histology , Trees/physiology , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...