Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small GTPases ; 13(1): 225-238, 2022 01.
Article in English | MEDLINE | ID: mdl-34558391

ABSTRACT

KRAS genes belong to the most frequently mutated family of oncogenes in cancer. The G12C mutation, found in a third of lung, half of colorectal and pancreatic cancer cases, is believed to be responsible for a substantial number of cancer deaths. For 30 years, KRAS has been the subject of extensive drug-targeting efforts aimed at targeting KRAS protein itself, but also its post-translational modifications, membrane localization, protein-protein interactions and downstream signalling pathways. So far, most KRAS targeting strategies have failed, and there are no KRAS-specific drugs available. However, clinical candidates targeting the KRAS G12C protein have recently been developed. MRTX849 and recently approved Sotorasib are covalent binders targeting the mutated cysteine 12, occupying Switch II pocket.Herein, we describe two fragment screening drug discovery campaigns that led to the identification of binding pockets on the KRAS G12C surface that have not previously been described. One screen focused on non-covalent binders to KRAS G12C, the other on covalent binders.


Subject(s)
Antineoplastic Agents , Neoplasms , Acetonitriles/therapeutic use , Antineoplastic Agents/therapeutic use , Humans , Mutation , Neoplasms/drug therapy , Piperazines , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines
2.
J Med Chem ; 59(15): 7066-74, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27355974

ABSTRACT

The HGF/MET pathway is frequently activated in a variety of cancer types. Several selective small molecule inhibitors of the MET kinase are currently in clinical evaluation, in particular for NSCLC, liver, and gastric cancer patients. We report herein the discovery of a series of triazolopyridazines that are selective inhibitors of wild-type (WT) MET kinase and several clinically relevant mutants. We provide insight into their mode of binding and report unprecedented crystal structures of the Y1230H variant. A multiparametric chemical optimization approach allowed the identification of compound 12 (SAR125844) as a development candidate. In this chemical series, absence of CYP3A4 inhibition was obtained at the expense of satisfactory oral absorption. Compound 12, a promising parenteral agent for the treatment of MET-dependent cancers, promoted sustained target engagement at tolerated doses in a human xenograft tumor model. Preclinical pharmacokinetics conducted in several species were predictive for the observed pharmacokinetic behavior of 12 in cancer patients.


Subject(s)
Benzothiazoles/pharmacology , Benzothiazoles/pharmacokinetics , Drug Discovery , Neoplasms, Experimental/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship , Urea/administration & dosage , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology
3.
Sci Rep ; 5: 7642, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25560837

ABSTRACT

Monoacylglycerol lipase (MAGL) represents a primary degradation enzyme of the endogenous cannabinoid (eCB), 2-arachidonoyglycerol (2-AG). This study reports a potent covalent MAGL inhibitor, SAR127303. The compound behaves as a selective and competitive inhibitor of mouse and human MAGL, which potently elevates hippocampal levels of 2-AG in mice. In vivo, SAR127303 produces antinociceptive effects in assays of inflammatory and visceral pain. In addition, the drug alters learning performance in several assays related to episodic, working and spatial memory. Moreover, long term potentiation (LTP) of CA1 synaptic transmission and acetylcholine release in the hippocampus, two hallmarks of memory function, are both decreased by SAR127303. Although inactive in acute seizure tests, repeated administration of SAR127303 delays the acquisition and decreases kindled seizures in mice, indicating that the drug slows down epileptogenesis, a finding deserving further investigation to evaluate the potential of MAGL inhibitors as antiepileptics. However, the observation that 2-AG hydrolysis blockade alters learning and memory performance, suggests that such drugs may have limited value as therapeutic agents.


Subject(s)
Analgesics/pharmacology , Arachidonic Acids/metabolism , Carbamates/pharmacology , Endocannabinoids/metabolism , Glycerides/metabolism , Learning/drug effects , Memory, Short-Term/drug effects , Monoacylglycerol Lipases/metabolism , Sulfonamides/pharmacology , Acetylcholine/metabolism , Administration, Oral , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Arachidonic Acids/chemistry , Binding Sites , Brain/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Carbamates/chemistry , Carbamates/therapeutic use , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Disease Models, Animal , Electric Stimulation , Endocannabinoids/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Glycerides/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hydrolysis , In Vitro Techniques , Long-Term Potentiation/drug effects , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, SCID , Monoacylglycerol Lipases/antagonists & inhibitors , Pain/drug therapy , Pain/pathology , Piperidines/pharmacology , Protein Structure, Tertiary , Pyrazoles/pharmacology , Rimonabant , Seizures/drug therapy , Seizures/pathology , Sulfonamides/chemistry , Sulfonamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...