Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7645, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996404

ABSTRACT

The ability to confine THz photons inside deep-subwavelength cavities promises a transformative impact for THz light engineering with metamaterials and for realizing ultrastrong light-matter coupling at the single emitter level. To that end, the most successful approach taken so far has relied on cavity architectures based on metals, for their ability to constrain the spread of electromagnetic fields and tailor geometrically their resonant behavior. Here, we experimentally demonstrate a comparatively high level of confinement by exploiting a plasmonic mechanism based on localized THz surface plasmon modes in bulk semiconductors. We achieve plasmonic confinement at around 1 THz into record breaking small footprint THz cavities exhibiting mode volumes as low as [Formula: see text], excellent coupling efficiencies and a large frequency tunability with temperature. Notably, we find that plasmonic-based THz cavities can operate until the emergence of electromagnetic nonlocality and Landau damping, which together constitute a fundamental limit to plasmonic confinement. This work discloses nonlocal plasmonic phenomena at unprecedentedly low frequencies and large spatial scales and opens the door to novel types of ultrastrong light-matter interaction experiments thanks to the plasmonic tunability.

2.
Phys Rev Lett ; 130(10): 106904, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962049

ABSTRACT

Ta_{2}NiSe_{5} is an excitonic insulator candidate showing the semiconductor or semimetal-to-insulator (SI) transition below T_{c}=326 K. However, since a structural transition accompanies the SI transition, deciphering the role of electronic and lattice degrees of freedom in driving the SI transition has remained controversial. Here, we investigate the photoexcited nonequilibrium state in Ta_{2}NiSe_{5} using pump-probe Raman and photoluminescence spectroscopies. The combined nonequilibrium spectroscopic measurements of the lattice and electronic states reveal the presence of a photoexcited metastable state where the insulating gap is suppressed, but the low-temperature structural distortion is preserved. We conclude that electron correlations play a vital role in the SI transition of Ta_{2}NiSe_{5}.

3.
Opt Express ; 30(25): 45202-45211, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522927

ABSTRACT

We report the coherent generation and detection of terahertz (THz) pulses featuring a spectral bandwidth in the range of 0.1-9 THz achieved via the use of a high repetition rate (250 kHz), low pulse energy (6.2 µJ) laser system. More specifically, we test and evaluate a solid-state biased coherent detection device in combination with a spintronic emitter. We demonstrate the use of this combination of techniques to measure the ultra-broadband THz frequency optical properties of bulk crystalline materials with time-domain spectroscopy.

4.
Phys Rev Lett ; 129(18): 187002, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36374691

ABSTRACT

Anisotropic strain is an external field capable of selectively addressing the role of nematic fluctuations in promoting superconductivity. We demonstrate this using polarization-resolved elasto-Raman scattering by probing the evolution of nematic fluctuations under strain in the normal and superconducting state of the paradigmatic iron-based superconductor Ba(Fe_{1-x}Co_{x})_{2}As_{2}. In the parent compound BaFe_{2}As_{2} we observe a strain-induced suppression of the nematic susceptibility which follows the expected behavior of an Ising order parameter under a symmetry breaking field. For the superconducting compound, the suppression of the nematic susceptibility correlates with the decrease of the critical temperature T_{c}, indicating a significant contribution of nematic fluctuations to electron pairing. Our results validate theoretical scenarios of enhanced T_{c} near a nematic quantum critical point.

5.
Nat Commun ; 12(1): 1427, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658507

ABSTRACT

Millimeter wave (mmWave) generation using photonic techniques has so far been limited to the use of near-infrared lasers that are down-converted to the mmWave region. However, such methodologies do not currently benefit from a monolithic architecture and suffer from the quantum defect i.e. the difference in photon energies between the near-infrared and mmWave region, which can ultimately limit the conversion efficiency. Miniaturized terahertz (THz) quantum cascade lasers (QCLs) have inherent advantages in this respect: their low energy photons, ultrafast gain relaxation and high nonlinearities open up the possibility of innovatively integrating both laser action and mmWave generation in a single device. Here, we demonstrate intracavity mmWave generation within THz QCLs over the unprecedented range of 25 GHz to 500 GHz. Through ultrafast time resolved techniques, we highlight the importance of modal phases and that the process is a result of a giant second-order nonlinearity combined with a phase matched process between the THz and mmWave emission. Importantly, this work opens up the possibility of compact, low noise mmWave generation using modelocked THz frequency combs.

SELECTION OF CITATIONS
SEARCH DETAIL
...