Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 85(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30578270

ABSTRACT

Macroalgae (or seaweeds) are considered potential biomass feedstocks for the production of renewable fuels and chemicals. Their sugar composition is different from that of lignocellulosic biomasses, and in green species, including Ulva lactuca, the major sugars are l-rhamnose and d-glucose. C. beijerinckii DSM 6423 utilized these sugars in a U. lactuca hydrolysate to produce acetic acid, butyric acid, isopropanol, butanol, and ethanol (IBE), and 1,2-propanediol. d-Glucose was almost completely consumed in diluted hydrolysates, while l-rhamnose or d-xylose was only partially utilized. In this study, the metabolism of l-rhamnose by C. beijerinckii DSM 6423 was investigated to improve its utilization from natural resources. Fermentations on d-glucose, l-rhamnose, and a mixture of d-glucose and l-rhamnose were performed. On l-rhamnose, the cultures showed low growth and sugar consumption and produced 1,2-propanediol, propionic acid, and n-propanol in addition to acetic and butyric acids, whereas on d-glucose, IBE was the major product. On a d-glucose-l-rhamnose mixture, both sugars were converted simultaneously and l-rhamnose consumption was higher, leading to high levels of 1,2-propanediol (78.4 mM), in addition to 59.4 mM butanol and 31.9 mM isopropanol. Genome and transcriptomics analysis of d-glucose- and l-rhamnose-grown cells revealed the presence and transcription of genes involved in l-rhamnose utilization and in bacterial microcompartment (BMC) formation. These data provide useful insights into the metabolic pathways involved in l-rhamnose utilization and the effects on the general metabolism (glycolysis, early sporulation, and stress response) induced by growth on l-rhamnose.IMPORTANCE A prerequisite for a successful biobased economy is the efficient conversion of biomass resources into useful products, such as biofuels and bulk and specialty chemicals. In contrast to other industrial microorganisms, natural solvent-producing clostridia utilize a wide range of sugars, including C5, C6, and deoxy-sugars, for production of long-chain alcohols (butanol and 2,3-butanediol), isopropanol, acetone, n-propanol, and organic acids. Butanol production by clostridia from first-generation sugars is already a commercial process, but for the expansion and diversification of the acetone, butanol, and ethanol (ABE)/IBE process to other substrates, more knowledge is needed on the regulation and physiology of fermentation of sugar mixtures. Green macroalgae, produced in aquaculture systems, harvested from the sea or from tides, can be processed into hydrolysates containing mixtures of d-glucose and l-rhamnose, which can be fermented. The knowledge generated in this study will contribute to the development of more efficient processes for macroalga fermentation and of mixed-sugar fermentation in general.


Subject(s)
Carbohydrate Metabolism , Clostridium beijerinckii/metabolism , Fermentation , Rhamnose/metabolism , Acetic Acid/metabolism , Biofuels , Butyrates/metabolism , Carbohydrate Metabolism/genetics , Clostridium beijerinckii/genetics , Ethanol/metabolism , Glucose/metabolism , Propionates/metabolism , Propylene Glycol , Seaweed/chemistry , Ulva/chemistry
2.
J Appl Phycol ; 28(6): 3511-3525, 2016.
Article in English | MEDLINE | ID: mdl-28035175

ABSTRACT

The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein (N × 4.6) kg-1 dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L-1 sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg-1 in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca. The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

3.
Bioresour Technol ; 128: 431-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23201525

ABSTRACT

Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L).


Subject(s)
Acetone/metabolism , Butanols/metabolism , Clostridium/metabolism , Ethanol/metabolism , Seaweed/microbiology , Acetone/isolation & purification , Biomass , Butanols/isolation & purification , Ethanol/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...