Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Neuropsychopharmacology ; 47(9): 1620-1632, 2022 08.
Article in English | MEDLINE | ID: mdl-35102259

ABSTRACT

Many pregnant women experience symptoms of depression, and are often treated with selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine. In utero exposure to SSRIs and maternal depressive symptoms is associated with sex-specific effects on the brain and behavior. However, knowledge about the neurobiological mechanisms underlying these sex differences is limited. In addition, most animal research into developmental SSRI exposure neglects the influence of maternal adversity. Therefore, we used a rat model relevant to depression to investigate the molecular effects of perinatal fluoxetine exposure in male and female juvenile offspring. We performed RNA sequencing and targeted DNA methylation analyses on the prefrontal cortex and basolateral amygdala; key regions of the corticolimbic circuit. Perinatal fluoxetine enhanced myelin-related gene expression in the prefrontal cortex, while inhibiting it in the basolateral amygdala. SSRI exposure and maternal adversity interacted to affect expression of genes such as myelin-associated glycoprotein (Mag) and myelin basic protein (Mbp). We speculate that altered myelination reflects altered brain maturation. In addition, these effects are stronger in males than in females, resembling known behavioral outcomes. Finally, Mag and Mbp expression correlated with DNA methylation, highlighting epigenetic regulation as a potential mechanism for developmental fluoxetine-induced changes in myelination.


Subject(s)
Fluoxetine , Prenatal Exposure Delayed Effects , Animals , Epigenesis, Genetic , Female , Fluoxetine/pharmacology , Gene Expression , Hippocampus , Humans , Male , Myelin Sheath/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Sprague-Dawley , Selective Serotonin Reuptake Inhibitors
2.
Psychopharmacology (Berl) ; 238(12): 3653-3667, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34557946

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are increasingly prescribed as medication for various affective disorders during pregnancy. SSRIs cross the placenta and affect serotonergic neurotransmission in the fetus, but the neurobehavioral consequences for the offspring remain largely unclear. Recent rodent research has linked perinatal SSRI exposure to alterations in both social and non-social aspects of behavior. However, this research has mainly focused on behavior within simplified environments. The current study investigates the effects of perinatal SSRI exposure on social and non-social investigation behaviors of adult rat offspring upon introduction to a novel seminatural environment with unknown conspecifics. During the perinatal period (gestational day 1 until postnatal day 21), rat dams received daily treatment with either an SSRI (fluoxetine, 10 mg/kg) or vehicle. Adult male and female offspring were observed within the first hour after introduction to a seminatural environment. The results showed that perinatal fluoxetine exposure altered aspects of non-social investigation behaviors, while not altering social investigation behaviors. More specifically, both fluoxetine-exposed males and females spent more total time on locomotor activity than controls. Furthermore, fluoxetine-exposed females spent less time exploring objects and specific elements in the environment. The data suggest that perinatal exposure to SSRIs leads to a quicker, less detailed investigation strategy in novel environments and that the alteration is mostly pronounced in females.


Subject(s)
Fluoxetine , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Female , Male , Pregnancy , Rats , Selective Serotonin Reuptake Inhibitors , Stress, Psychological
3.
Reprod Toxicol ; 104: 27-43, 2021 09.
Article in English | MEDLINE | ID: mdl-34186199

ABSTRACT

Both untreated and SSRI antidepressant treated maternal depression during the perinatal period can pose both short-and long-term health risks to the offspring. Therefore, it is essential to have an effective SSRI treatment consisting of the lowest effective dose beneficial to the mother, without causing adverse effects on offspring development. The effects of prenatal stress on neurobehavioral outcomes were studied in the pregnant and lactating rat dam, and her offspring. Furthermore, stressed dams were treated with different doses of fluoxetine (FLX; 5, 10and 25 mg/kg) during pregnancy and the postpartum period. We found that prenatal stress-induced anxiety-and depressive-like behaviour and increased HPA-axis function in pregnant and postpartum dams, and in offspring. Maternal stress impaired object recognition but did not affect spatial memory in offspring. Prenatal stress decreased whole-brain serotonin and brain-derived-neurotrophic-factor, and increased interleukin-17 and malondialdehyde, but did not affect oxytocin and interleukin-6 in the brains of offspring. Maternal treatment with 5 mg/kg FLX during the perinatal period did not rescue any stress-induced anxiety/depressive-like behaviour in the pregnant and postpartum dam and had only a few rescuing effects in offspring. Maternal FLX treatment with 10 mg/kg did rescue most stress-induced anxiety-and depressive-like behaviour or HPA-axis-function in dams and offspring. The highest dose tested, 25 mg/kg FLX, had the rescuing properties in dams while having the same, or an even greater, detrimental effect as prenatal stress on offspring behaviour and molecular alterations in the brain. Our results show prenatal stress rescuing properties for FLX treatment in the pregnant and postpartum dam, with dose-dependent effects on the offspring.


Subject(s)
Brain/drug effects , Fluoxetine/toxicity , Selective Serotonin Reuptake Inhibitors/toxicity , Animals , Antidepressive Agents/therapeutic use , Anxiety , Behavior, Animal/drug effects , Brain/physiology , Female , Fluoxetine/therapeutic use , Hippocampus/drug effects , Lactation/drug effects , Male , Maternal Behavior/drug effects , Maternal Behavior/psychology , Oxytocin/pharmacology , Postpartum Period , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Selective Serotonin Reuptake Inhibitors/therapeutic use , Stress, Psychological
4.
Sci Rep ; 11(1): 8518, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875712

ABSTRACT

Gestational stress can increase postpartum depression in women. To treat maternal depression, fluoxetine (FLX) is most commonly prescribed. While FLX may be effective for the mother, at high doses it may have adverse effects on the fetus. As environmental enrichment (EE) can reduce maternal stress effects, we hypothesized that a subthreshold dose of FLX increases the impact of EE to reduce anxiety and depression-like behavior in postpartum dams exposed to gestational stress. We evaluated this hypothesis in mice and to assess underlying mechanisms we additionally measured hypothalamic-pituitary-adrenal (HPA) axis function and brain levels of the hormone oxytocin, which are thought to be implicated in postpartum depression. Gestational stress increased anxiety- and depression-like behavior in postpartum dams. This was accompanied by an increase in HPA axis function and a decrease in whole-brain oxytocin levels in dams. A combination of FLX and EE remediated the behavioral, HPA axis and oxytocin changes induced by gestational stress. Central administration of an oxytocin receptor antagonist prevented the remediating effect of FLX + EE, indicating that brain oxytocin contributes to the effect of FLX + EE. These findings suggest that oxytocin is causally involved in FLX + EE mediated remediation of postpartum stress-related behaviors, and HPA axis function in postpartum dams.


Subject(s)
Depression, Postpartum/drug therapy , Fluoxetine/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Oxytocin/metabolism , Pituitary-Adrenal System/drug effects , Postpartum Period/drug effects , Stress, Psychological/drug therapy , Animals , Anxiety/drug therapy , Anxiety/metabolism , Anxiety Disorders/drug therapy , Anxiety Disorders/metabolism , Brain/drug effects , Brain/metabolism , Depression, Postpartum/metabolism , Disease Models, Animal , Female , Hypothalamo-Hypophyseal System/metabolism , Male , Maternal Behavior/drug effects , Mice , Pituitary-Adrenal System/metabolism , Postpartum Period/metabolism , Pregnancy , Receptors, Oxytocin/metabolism , Stress, Psychological/metabolism
5.
Psychoneuroendocrinology ; 120: 104796, 2020 10.
Article in English | MEDLINE | ID: mdl-32711369

ABSTRACT

Serotonin plays an important role in adult female sexual behavior, however little is known about the influence of serotonin during early development on sexual functioning in adulthood. During early development, serotonin acts as neurotrophic factor, while it functions as a modulatory neurotransmitter in adulthood. The occurrence of serotonin release, could thus have different effects on behavioral outcomes, depending on the developmental period in which serotonin is released. Because serotonin is involved in the development of the HPG axis which is required for puberty establishment, serotonin could also alter expression patterns of for instance the estrogen receptor ɑ (ERɑ). The aim of our study was to investigate the effects of increased serotonin levels during early development on adult female rat sexual behavior during the full behavioral estrus in a seminatural environment. To do so, rats were perinatally exposed with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10 mg/kg FLX) and sexual performance was tested during adulthood. All facets of female sexual behavior between the first and last lordosis (behavioral estrus), and within each copulation bout of the behavioral estrus were analyzed. Besides the length and onset of the behavioral estrus and the sexual behaviors patterns, other social and conflict behavior were also investigated. In addition, we studied the effects of perinatal FLX exposure on ERɑ expression patterns in the medial preoptic nucleus, ventromedial nucleus of the hypothalamus, medial amygdala, bed nucleus of the stria terminalis, and the dorsal raphé nucleus. The results showed that perinatal fluoxetine exposure has no effect on adult female sexual behavior. The behavioral estrus of FLX-females had the same length and pattern as CTR-females. In addition, FLX- and CTR-females showed the same amount of paracopulatory behavior and lordosis, both during the full behavioral estrus and the "most active bout". Furthermore, no differences were found in the display of social and conflict behaviors, nor in ERɑ expression patterns in the brain. We conclude that increases in serotonin levels during early development do not have long-term consequences for female sexual behavior in adulthood.


Subject(s)
Fluoxetine/pharmacology , Sexual Behavior, Animal/drug effects , Sexual Maturation/drug effects , Animals , Animals, Newborn/metabolism , Behavior, Animal/drug effects , Brain/metabolism , Estrus/drug effects , Female , Pregnancy , Preoptic Area/metabolism , Rats , Rats, Wistar , Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Social Behavior
6.
Psychopharmacology (Berl) ; 237(9): 2589-2600, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32676774

ABSTRACT

RATIONALE: Many depressed women continue antidepressant treatment during pregnancy. Selective serotonin reuptake inhibitor (SSRI) treatment during pregnancy increases the risk for abnormal social development of the child, including increased aggressive or defiant behavior, with unknown effects on sexual behavior. OBJECTIVES: Our aim was to investigate the effects of perinatal SSRI treatment and maternal depression, both separately and combined, on aggressive and sexual behavior in male rat offspring. METHODS: Heterozygous serotonin transporter (SERT± ) knockout dams exposed to early life stress (ELSD) were used as an animal model of maternal depression. Early life stress consisted of separating litters from their mother for 6 h a day on postnatal day (PND)2-15, resulting in a depressive-like phenotype in adulthood. Depressive-like dams were treated with fluoxetine (FLX, 10 mg/kg) or vehicle throughout pregnancy and lactation (gestational day 1 until PND 21). Male offspring were tested for aggressive and sexual behavior in adulthood. As lifelong reductions in SERT expression are known to alter behavioral outcome, offspring with normal (SERT+/+) and reduced (SERT± ) SERT expression were assessed. RESULTS: Perinatal FLX treatment reduced offensive behavior and the number of animals attacking and increased the latency to attack, especially in SERT+/+ offspring. Perinatal FLX treatment reduced the mounting frequency in SERT+/+ offspring. ELSD increased offensive behavior, without affecting sexual behavior in SERT± offspring. CONCLUSIONS: Overall, our research demonstrates that perinatal FLX treatment and ELSD have opposite effects on aggressive behavior, with little impact on sexual behavior of male offspring.


Subject(s)
Aggression/drug effects , Aggression/psychology , Fluoxetine/pharmacology , Prenatal Exposure Delayed Effects/psychology , Sexual Behavior, Animal/drug effects , Stress, Psychological/psychology , Animals , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Female , Fluoxetine/adverse effects , Fluoxetine/therapeutic use , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar , Selective Serotonin Reuptake Inhibitors/adverse effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Sexual Behavior, Animal/physiology , Stress, Psychological/drug therapy
7.
Psychopharmacology (Berl) ; 237(8): 2555-2568, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32533210

ABSTRACT

RATIONALE: Selective serotonin reuptake inhibitor (SSRI) antidepressants are increasingly prescribed during pregnancy. Changes in serotonergic signaling during human fetal development have been associated with changes in brain development and with changes in affective behavior in adulthood. The suprachiasmatic nucleus (SCN) is known to be modulated by serotonin and it is therefore assumed that SSRIs may affect circadian rhythms. However, effects of perinatal SSRI treatment on circadian system functioning in the offspring are largely unknown. OBJECTIVE: Our aim was to investigate the effects of perinatal exposure to the SSRI fluoxetine (FLX) on circadian behavior, affective behavior, and 5-HT1A receptor sensitivity in female rats. In addition, we studied the expression of clock genes and the 5-HT1A receptor in the SCN, as they are potentially involved in underlying mechanisms contributing to changes in circadian rhythms. RESULTS: Perinatal FLX exposure shortened the free-running tau in response to the 5-HT1A/7 agonist 8-OH-DPAT. However, FLX exposure did not alter anxiety, stress coping, and 5-HT1A receptor sensitivity. No differences were found in 5-HT1A receptor and clock genes Per1, Per2, Cry1, and Cry2 SCN gene expression. CONCLUSIONS: Perinatal FLX exposure altered the response to a phase-shifting challenge in female rats, whether this may pose health risks remains to be investigated.


Subject(s)
Adaptation, Psychological/drug effects , Circadian Rhythm/drug effects , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Adaptation, Psychological/physiology , Animals , Antidepressive Agents/pharmacology , Circadian Rhythm/physiology , Female , Rats , Rats, Transgenic , Rats, Wistar , Serotonin/metabolism , Suprachiasmatic Nucleus/drug effects , Suprachiasmatic Nucleus/physiology
8.
Physiol Behav ; 222: 112899, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32348809

ABSTRACT

SSRIs are commonly used to treat pregnant women with depression. However, SSRIs can cross the placenta and affect the development of the fetus. The effects of perinatal SSRI exposure, and especially the effects on social behavior, are still incompletely documented. This study first aims to investigate whether rats show prosocial behavior in the form of consolation behavior. Secondly, it aims to investigate whether perinatal SSRI exposure affects this prosocial behavior. At last, we investigate whether the behavior changed after the rats had been exposed to an additional white-noise stressor. Rat dams received 10 mg/kg/d fluoxetine (FLX) or vehicle (CTR) via oral gavage from gestational day 1 until postnatal day 21. At adulthood, the rat offspring were housed in four cohorts of 4 females and 4 males in a seminatural environment. As prosocial behaviors are more prominent after stressful situations, we investigated the behavioral response of rats immediately after natural aggressive encounters (fights). Additionally, we studied whether a stressful white-noise exposure would alter this response to the aggressive encounters. Our study indicates that CTR-female rats are able to show third party prosocial behavior in response to witnessing aggressive encounters between conspecifics in a seminatural environment. In addition, we showed that perinatal FLX exposure impairs the display of prosocial behavior in female rats. Moreover, we found no signs of prosocial behavior in CTR- and FLX-males after natural aggressive encounters. After white-noise exposure the effects in third party prosocial behavior of CTR-females ceased to exist. We conclude that female rats are able to show prosocial behavior, possibly in the form of consolation behavior. In addition, the negative effects of perinatal fluoxetine exposure on prosocial behavior could provide additional evidence that SSRI treatment during pregnancy could contribute to the risk for social impairments in the offspring.


Subject(s)
Fluoxetine , Prenatal Exposure Delayed Effects , Adult , Altruism , Animals , Behavior, Animal , Female , Humans , Male , Pregnancy , Rats , Selective Serotonin Reuptake Inhibitors/toxicity , Stress, Psychological
9.
Behav Brain Res ; 392: 112657, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32339551

ABSTRACT

Many women diagnosed with a major depression continue or initiate antidepressant treatment during pregnancy. Both maternal stress and selective serotonin inhibitor (SSRI) antidepressant treatment during pregnancy have been associated with changes in offspring behavior, including increased anxiety and depressive-like behavior. Our aim was to investigate the effects of the SSRI fluoxetine (FLX), with and without the presence of a maternal depression, on affective behavior in male and female rat offspring. As reduced serotonin transporter (SERT) availability has been associated with altered behavioral outcome, both offspring with normal (SERT+/+) and reduced (SERT+/-) SERT expression were included. For our animal model of maternal depression, SERT+/- dams exposed to early life stress were used. Perinatal FLX treatment and early life stress in dams (ELSD) had sex- and genotype-specific effects on affective behavior in the offspring. In female offspring, perinatal FLX exposure interacted with SERT genotype to increase anxiety and depressive-like behavior in SERT+/+, but not SERT+/-, females. In male offspring, ELSD reduced anxiety and interacted with SERT genotype to decrease depressive-like behavior in SERT+/-, but not SERT+/+, males. Altogether, SERT+/+ female offspring appear to be more sensitive than SERT+/- females to the effects of perinatal FLX exposure, while SERT+/- male offspring appear more sensitive than SERT+/+ males to the effects of ELSD on affective behavior. Our data suggest a role for offspring SERT genotype and sex in FLX and ELSD-induced effects on affective behavior, thereby contributing to our understanding of the effects of perinatal SSRI treatment on offspring behavior later in life.


Subject(s)
Affect , Fluoxetine , Serotonin Plasma Membrane Transport Proteins , Stress, Psychological , Animals , Female , Male , Pregnancy , Rats , Affect/drug effects , Animals, Newborn , Antidepressive Agents/pharmacology , Anxiety , Anxiety Disorders/drug therapy , Behavior, Animal/drug effects , Depression , Depressive Disorder/drug therapy , Disease Models, Animal , Fluoxetine/pharmacology , Genotype , Maternal Behavior/drug effects , Prenatal Exposure Delayed Effects/drug therapy , Rats, Wistar , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin Plasma Membrane Transport Proteins/drug effects , Serotonin Plasma Membrane Transport Proteins/genetics , Sex Factors
10.
Gut Microbes ; 11(4): 735-753, 2020 07 03.
Article in English | MEDLINE | ID: mdl-31971855

ABSTRACT

Up to 10% of women use selective serotonin reuptake inhibitor (SSRI) antidepressants during pregnancy and postpartum. Recent evidence suggests that SSRIs are capable of altering the gut microbiota. However, the interaction between maternal depression and SSRI use on bacterial community composition and the availability of microbiota-derived metabolites during pregnancy and lactation is not clear. We studied this using a rat model relevant to depression, where adult females with a genetic vulnerability and stressed as pups show depressive-like behaviors. Throughout pregnancy and lactation, females received the SSRI fluoxetine or vehicle. High-resolution 16S ribosomal RNA marker gene sequencing and targeted metabolomic analysis were used to assess the fecal microbiome and metabolite availability, respectively. Not surprisingly, we found that pregnancy and lactation segregate in terms of fecal microbiome diversity and composition, accompanied by changes in metabolite availability. However, we also showed that fluoxetine treatment altered important features of this transition from pregnancy to lactation most clearly in previously stressed dams, with lower fecal amino acid concentrations. Amino acid concentrations, in turn, correlated negatively with the relative abundance of bacterial taxa such as Prevotella and Bacteroides. Our study demonstrates an important relationship between antidepressant use during the perinatal period and maternal fecal metabolite availability in a rat model relevant to depression, possibly through parallel changes in the gut microbiome. Since microbial metabolites contribute to homeostasis and development, insults to the maternal microbiome by SSRIs might have health consequences for mother and offspring.


Subject(s)
Antidepressive Agents, Second-Generation/therapeutic use , Bacteria/growth & development , Depression/drug therapy , Fluoxetine/therapeutic use , Gastrointestinal Microbiome/drug effects , Lactation , Metabolome/drug effects , Pregnancy Complications/drug therapy , Amino Acids/metabolism , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Depression/microbiology , Feces/chemistry , Feces/microbiology , Female , Metabolomics , Pregnancy , Pregnancy Complications/microbiology , Rats , Rats, Wistar , Selective Serotonin Reuptake Inhibitors/therapeutic use
11.
Neuropharmacology ; 151: 84-97, 2019 06.
Article in English | MEDLINE | ID: mdl-30959021

ABSTRACT

The use of selective serotonin reuptake inhibitors (SSRI) during pregnancy has increased tremendously, but the consequences for the offspring remain largely unclear. Several studies have described potential effects of perinatal SSRI-exposure on neurobehavioral outcomes using simplified rodent test set-ups, however these set-ups only assess a small fraction of the behavior. For translational purposes it is important to take the environmental influences into account which children are exposed to in real life. By using a seminatural environmental set-up, this study is the first to assess behavioral outcomes in offspring exposed to perinatal SSRI exposure under seminatural circumstances. Mothers received daily the SSRI fluoxetine (FLX, 10 mg/kg p.o.) or vehicle (CTR) from gestational day 1 until postnatal day 21. To assess the effect of FLX exposure during early development, female and male offspring were behaviorally tested in the seminatural environment at adulthood. Baseline behavior was measured in addition to responses during and after stressful white-noise events. Behavior was observed on two days, day 4 on which females were sexually non-receptive, and day 7, on which females were sexual receptive. Perinatal FLX exposure reduced general activity in females and increased behavior related to a social context in both males and females. After a stressful white-noise event some behaviors switched. Whereas FLX-females switch from resting socially to resting more solitarily, FLX-males show an increase in self-grooming behavior after the stressor and showed more freezing behavior in the open area. We conclude that perinatal FLX exposure leads to alterations in social and stress-coping behaviors in adulthood, when observed in a seminatural environment. Whether these adaptations in behavior are advantageous or disadvantageous remains to be established.


Subject(s)
Adaptation, Psychological/drug effects , Behavior, Animal/drug effects , Fluoxetine/administration & dosage , Prenatal Exposure Delayed Effects , Selective Serotonin Reuptake Inhibitors/administration & dosage , Social Behavior , Stress, Psychological , Animals , Environment , Female , Pregnancy , Rats
12.
Front Neurosci ; 13: 229, 2019.
Article in English | MEDLINE | ID: mdl-30914920

ABSTRACT

Recently, the putative association between selective serotonin reuptake inhibitor (SSRI) exposure during pregnancy and the development of social disorders in children has gained increased attention. However, clinical studies struggle with the confounding effects of maternal depression typically co-occurring with antidepressant treatment. Furthermore, preclinical studies using an animal model of maternal depression to study effects of perinatal SSRI exposure on offspring social behavior are limited. Therefore, the aim of this study was to investigate effects of perinatal fluoxetine exposure on juvenile and adult social behavior in male and female rat offspring, using an animal model of maternal vulnerability. We exposed heterozygous serotonin transporter (SERT) deficient female rats to early life maternal separation stress, and used this as a model for maternal vulnerability. Control and early life stressed heterozygous serotonin transporter knockout (SERT) dams were treated with the SSRI fluoxetine or vehicle throughout gestation and lactation. Subsequently, both male and female wildtype (SERT+/+) and heterozygous (SERT+/-) rat offspring were tested for pup ultrasonic vocalizations (USVs), juvenile social play behavior and adult social interaction. Fluoxetine treatment of the dams resulted in a reduced total USV duration in pups at postnatal day 6, especially in SERT+/+ males. Perinatal fluoxetine exposure lowered social play behavior in male offspring from both control and early life stressed dams. However, in females a fluoxetine-induced reduction in juvenile play behavior was only present in offspring from control dams. Offspring genotype did not affect juvenile play behavior. Despite fluoxetine-induced behavioral effects at juvenile age, fluoxetine reduced male adult social behavior in offspring from control dams only. Effects of fluoxetine on female adult social behavior were virtually absent. Interestingly, early life stress in dams increased adult social exploration in vehicle exposed SERT+/+ female offspring and total social behavior in fluoxetine exposed adult SERT+/- male offspring. Furthermore, SERT+/- males appeared less social during adulthood compared to SERT+/+ males. Overall, the present study shows that chronic blockade of the serotonin transporter by fluoxetine during early development has a considerable impact on pup USVs, juvenile social play behavior in both male and female offspring, and to a lesser extent on male social interaction in adulthood.

13.
Front Cell Neurosci ; 11: 222, 2017.
Article in English | MEDLINE | ID: mdl-28824378

ABSTRACT

The neurotransmitter serotonin (5-HT) plays a vital regulatory role in both the brain and gut. 5-HT is crucial for regulating mood in the brain as well as gastrointestinal motility and secretion peripherally. Alterations in 5-HT transmission have been linked to pathological symptoms in both intestinal and psychiatric disorders and selective 5-HT transporter (5-HTT) inhibitors, affecting the 5-HT system by blocking the 5-HT transporter (5-HTT) have been successfully used to treat CNS- and intestinal disorders. Humans that carry the short allele of the 5-HTT-linked polymorphic region (5-HTTLPR) are more vulnerable to adverse environmental stressors, in particular early life stress. Although, early life stress has been shown to alter the composition of the gut microbiota, it is not known whether a lower 5-HTT expression is also associated with an altered microbiome composition. To investigate this, male and female wild type (5-HTT+/+), heterozygous (5-HTT+/-), and knockout (5-HTT-/-) 5-HT transporter rats were maternally separated for 6 h a day from postnatal day 2 till 15. On postnatal day 21, fecal samples were collected and the impact of 5-HTT genotype and maternal separation (MS) on the microbiome was analyzed using high-throughput sequencing of the bacterial 16S rRNA gene. MS showed a shift in the ratio between the two main bacterial phyla characterized by a decrease in Bacteroidetes and an increase in Firmicutes. Interestingly, the 5-HTT genotype caused a greater microbal dysbiosis (microbial imbalance) compared with MS. A significant difference in microbiota composition was found segregating 5-HTT-/- apart from 5-HTT+/- and 5-HTT+/+ rats. Moreover, exposure of rats with 5-HTT diminished expression to MS swayed the balance of their microbiota away from homeostasis to 'inflammatory' type microbiota characterized by higher abundance of members of the gut microbiome including Desulfovibrio, Mucispirillum, and Fusobacterium, all of which are previously reported to be associated with a state of intestinal inflammation, including inflammation associated with MS and brain disorders like multiple depressive disorders. Overall, our data show for the first time that altered expression of 5-HTT induces disruptions in male and female rat gut microbes and these 5-HTT genotype-related disruptions are augmented when combined with early life stress.

14.
Front Cell Neurosci ; 11: 117, 2017.
Article in English | MEDLINE | ID: mdl-28491024

ABSTRACT

The interaction between the serotonin transporter (SERT) linked polymorphic region (5-HTTLPR) and adverse early life stressing (ELS) events is associated with enhanced stress susceptibility and risk to develop mental disorders like major depression, anxiety, and aggressiveness. In particular, human short allele carriers are at increased risk. This 5-HTTLPR polymorphism is absent in the rodent SERT gene, but heterozygous SERT knockout rodents (SERT+/-) show several similarities to the human S-allele carrier, therefore creating an animal model of the human situation. Many rodent studies investigated ELS interactions in SERT knockout rodents combined with ELS. However, underlying neuromolecular mechanisms of the (mal)adaptive responses to adversity displayed by SERT rodents remain to be elucidated. Here, we provide a comprehensive review including studies describing mechanisms underlying SERT variation × ELS interactions in rodents. Alterations at the level of translation and transcription but also epigenetic alterations considerably contribute to underlying mechanisms of SERT variation × ELS interactions. In particular, SERT+/- rodents exposed to adverse early rearing environment may be of high translational and predictive value to the more stress sensitive human short-allele carrier, considering the similarity in neurochemical alterations. Therefore, SERT+/- rodents are highly relevant in research that aims to unravel the complex psychopathology of mental disorders. So far, most studies fail to show solid evidence for increased vulnerability to develop affective-like behavior after ELS in SERT+/- rodents. Several reasons may underlie these failures, e.g., (1) stressors used might not be optimal or severe enough to induce maladaptations, (2) effects in females are not sufficiently studied, and (3) few studies include both behavioral manifestations and molecular correlates of ELS-induced effects in SERT+/- rodents. Of course, one should not exclude the (although unlikely) possibility of SERT+/- rodents not being sensitive to ELS. In conclusion, future studies addressing ELS-induced effects in the SERT+/- rodents should extensively study both long-term behavioral and (epi)genetic aspects in both sexes. Finally, further research is warranted using more severe stressors in animal models. From there on, we should be able to draw solid conclusions whether the SERT+/- exposed to ELS is a suitable translational animal model for studying 5-HTTLPR polymorphism and stress interactions.

15.
Neuropsychopharmacology ; 41(3): 858-68, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26174597

ABSTRACT

Social play behavior, abundant in the young of most mammalian species, is thought to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational properties of social play have only sporadically been investigated, we developed a setup in which rats responded for social play under a progressive ratio schedule of reinforcement. Dopaminergic neurotransmission plays a key role in incentive motivational processes, and both dopamine and noradrenaline have been implicated in the modulation of social play behavior. Therefore, we investigated the role of dopamine and noradrenaline in the motivation for social play. Treatment with the psychostimulant drugs methylphenidate and cocaine increased responding for social play, but suppressed its expression during reinforced play periods. The dopamine reuptake inhibitor GBR-12909 increased responding for social play, but did not affect its expression, whereas the noradrenaline reuptake inhibitor atomoxetine decreased responding for social play as well as its expression. The effects of methylphenidate and cocaine on responding for social play, but not their play-suppressant effects, were blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. In contrast, pretreatment with the α2-adrenoceptor antagonist RX821002 prevented the play-suppressant effect of methylphenidate, but left its effect on responding for social play unaltered. In sum, the present study introduces a novel method to study the incentive motivational properties of social play behavior in rats. Using this paradigm, we demonstrate dissociable roles for dopamine and noradrenaline in social play behavior: dopamine stimulates the motivation for social play, whereas noradrenaline negatively modulates the motivation for social play behavior and its expression.


Subject(s)
Dopamine/metabolism , Motivation/physiology , Norepinephrine/metabolism , Social Behavior , Adrenergic Uptake Inhibitors/pharmacology , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Atomoxetine Hydrochloride/pharmacology , Cocaine/pharmacology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dopamine Antagonists/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Flupenthixol/pharmacology , Idazoxan/analogs & derivatives , Idazoxan/pharmacology , Male , Methylphenidate/pharmacology , Motivation/drug effects , Neuropsychological Tests , Piperazines/pharmacology , Random Allocation , Rats, Wistar , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Dopamine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...