Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 10(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35632531

ABSTRACT

In the vaccine industry, multiple physicochemical, immunological, in vitro and in vivo analytical methods are applied throughout the manufacturing process to characterize and monitor the quality of vaccines. Presented here is the Single Epitope Antigenicity Test (SEAT), an innovative, quantitative epitope profiling method which provides an extended immunochemical analysis for diphtheria toxoid (DTxd) to be used for consistency testing during manufacturing process changes. The method uses BioLayer Interferometry (BLI) and a panel of monoclonal antibodies (mAbs) to independently assess nine individual antigenic sites of DTxd. The panel includes mAbs which are functional, bind distinct sites on DTxd and are able to distinguish intact DTxd from that which has been exposed to heat treatment. The SEAT method was qualified for precision, accuracy, and linearity, and was used to define a preliminary comparability range for DTxd made using the current manufacturing process. DTxd lots manufactured using alternate processes were assessed in the context of this range to determine the impact on DTxd antigenicity. Epitope profiling by SEAT provides quantitative information on the integrity of multiple important antigenic regions of DTxd, and therefore represents a valuable tool in a comprehensive analytical test package which can be used to support manufacturing process changes for vaccines.

2.
Biotechnol J ; 17(2): e2100358, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34747565

ABSTRACT

BACKGROUND: Epitope mapping is an increasingly important aspect of biotherapeutic and vaccine development. Recent advances in therapeutic antibody design and production have enabled candidate mAbs to be identified at a rapidly increasing rate, resulting in a significant bottleneck in the characterization of "structural" epitopes, that are challenging to determine using existing high throughput epitope mapping tools. Here, a Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) epitope screening workflow was introduced that is well suited for accelerated characterization of epitopes with a common antigen. MAIN METHODS AND MAJOR RESULTS: The method is demonstrated on set of six candidate mAbs targeting Pertactin (PRN). Using this approach, five of the six epitopes were unambiguously determined using two HDX mixing timepoints in 24 h total run time, which is equivalent to the instrument time required to map a single epitope using the conventional workflow. CONCLUSION: An accelerated HDX-MS epitope screening workflow was developed. The "screening" workflow successfully characterized five (out of six attempted) novel epitopes on the PRN antigen; information that can be used to support vaccine antigenicity assays.


Subject(s)
Antibodies, Monoclonal , Hydrogen Deuterium Exchange-Mass Spectrometry , Deuterium , Epitope Mapping , Epitopes , Workflow
3.
Biologicals ; 67: 62-68, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32843276

ABSTRACT

During vaccine production, RNA from chimeric yellow fever-dengue (CYD) vaccine viruses (CYD1, CYD2, CYD3 and CYD4) is currently quantified using separate serotype-specific RT-qPCR assays. Here we describe the results from a proof-of-concept study on the development of a multiplex reverse transcriptase droplet digital PCR (RT-ddPCR) assay for simultaneous quantification of RNA for all four viruses. Serotype-specific simplex RT-ddPCRs were developed using the serotype-specific PCR systems (forward and reverse primers and FAM (fluorescent chromophores 6-carboxyfluorescein) and YY (Yakima Yellow)-labelled probes), used in the routine RT-qPCR. The PCR systems were specific and gave similar quantification results to those from the RT-qPCR assay. Linear regression analyses were used to select relative probe concentrations to obtain distinct clusters for each target RNA in a 2-D cluster plot in a multiplex RT-ddPCR assay. We showed the clusters were positioned as predicted in the model for each CYD RNA and were well separated. The multiplex RT-ddPCR gave similar quantification results to those obtained by the serotype-specific RT-qPCR assays for triplicate samples containing 7, 8 or 9 Log10 Geq/mL. In conclusion, these results demonstrate that it is possible to quantify RNA from four CYD serotypes with a multiplex RT-ddPCR assay in a single assay.


Subject(s)
Dengue Virus/genetics , Dengue/diagnosis , Proof of Concept Study , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Dengue/virology , Dengue Virus/classification , Dengue Virus/physiology , Humans , Reproducibility of Results , Sensitivity and Specificity , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL
...