Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 350(6258): 307-10, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26338795

ABSTRACT

Detecting single-photon level signals­carriers of both classical and quantum information­is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz with sufficient dynamic range to read out 20 superconducting qubits. To achieve this performance, we introduce a subwavelength resonant phase-matching technique that enables the creation of nonlinear microwave devices with unique dispersion relations. We benchmark the amplifier with weak measurements, obtaining a high quantum efficiency of 75% (70% including noise added by amplifiers following the Josephson amplifier). With a flexible design based on compact lumped elements, this Josephson amplifier has broad applicability to microwave metrology and quantum optics.

2.
Phys Rev Lett ; 114(24): 240501, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26196969

ABSTRACT

Remarkable advancements in coherence and control fidelity have been achieved in recent years with cryogenic solid-state qubits. Nonetheless, thermalizing such devices to their milliKelvin environments has remained a long-standing fundamental and technical challenge. In this context, we present a systematic study of the first-excited-state population in a 3D transmon superconducting qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al., we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35-150 mK. Below 35 mK, the excited-state population saturates at approximately 0.1%. We verified this result using a flux qubit with ten times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T(eff)=35 mK. Assuming T(eff) is due solely to hot quasiparticles, the inferred qubit lifetime is 108 µs and in plausible agreement with the measured 80 µs.

3.
Phys Rev Lett ; 107(21): 217401, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181922

ABSTRACT

We describe a microwave photon counter based on the current-biased Josephson junction. The junction is tuned to absorb single microwave photons from the incident field, after which it tunnels into a classically observable voltage state. Using two such detectors, we have performed a microwave version of the Hanbury Brown-Twiss experiment at 4 GHz and demonstrated a clear signature of photon bunching for a thermal source. The design is readily scalable to tens of parallelized junctions, a configuration that would allow number-resolved counting of microwave photons.

4.
Phys Rev Lett ; 103(11): 117001, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19792393

ABSTRACT

We have characterized the complex inductance of dc SQUIDs cooled to millikelvin temperatures. The SQUID inductance displays a rich, history-dependent structure as a function of temperature, with fluctuations of order 1 fH. At a fixed temperature, the SQUID inductance fluctuates with a 1/f power spectrum; the inductance noise is highly correlated with the conventional 1/f flux noise. The data are interpreted in terms of the reconfiguration of clusters of surface spins, with correlated fluctuations of effective magnetic moments and relaxation times.

5.
Phys Rev Lett ; 100(22): 227006, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-18643451

ABSTRACT

We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. The data are compatible with the thermal polarization of surface spins in the trapped fields of the vortices. In the absence of trapped flux, we observe evidence of spin-glass freezing at low temperature. These results suggest an explanation for the universal 1/f flux noise in SQUIDs and superconducting qubits.

7.
Beginnings ; 11(10): 4-5, 1991.
Article in English | MEDLINE | ID: mdl-1802297
9.
11.
Berita Jururawat ; 11(2): 27-30, 1971 Nov.
Article in English | MEDLINE | ID: mdl-5210383
SELECTION OF CITATIONS
SEARCH DETAIL
...