Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 105(12): 4957-4973, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34129082

ABSTRACT

To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)-specific monoclonal antibody (mAb), the Escherichia coli-expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli-expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient-derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. KEY POINTS: • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells.


Subject(s)
Hepatitis E virus , Animals , Antibodies, Monoclonal , CHO Cells , Capsid , Capsid Proteins , Cricetinae , Cricetulus , Escherichia coli , Humans , Mice , Mice, Inbred BALB C
2.
J Mol Recognit ; 27(12): 707-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25319618

ABSTRACT

Para-maleimidophenyl (p-MP) modified gold surfaces have been prepared by one-step electrochemical deposition and used in surface plasmon resonance (SPR) studies. Therefore, a FITC mimotope peptide (MP1, 12 aa), a human mucin 1 epitope peptide (MUC, 9 aa) and a protein with their specific antibodies were used as model systems. The peptides were modified with an N-terminal cysteine for covalent and directed coupling to the maleimido functionalized surface by means of Michael addition. The coupling yield of the peptide, the binding characteristics of antibody and the unspecific adsorption of the analytes were investigated. The results expand the spectrum of biosensors usable with p-MP by widely used SPR and support its potential to be versatile for several electrochemical and optical biosensors. This allows the combination of an electrochemical and optical read-out for a broad variety of biomolecular interactions on the same chip.


Subject(s)
Gold/chemistry , Maleimides/chemistry , Surface Plasmon Resonance/methods , Antibodies/metabolism , Fluorescein-5-isothiocyanate/metabolism , Green Fluorescent Proteins/metabolism , Humans , Immobilized Proteins/metabolism , Kinetics , Ligands , Peptides/metabolism , Protein Binding , Recombinant Fusion Proteins/metabolism
3.
J Pept Sci ; 19(9): 588-97, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23893543

ABSTRACT

Proteasomes are cellular proteases involved in the degradation of numerous cellular proteins. The 20S proteasome is a cylindrical 28-mer protein complex composed of two outer heptameric α-rings forming the entrance for the protein substrate and two inner heptameric ß-rings carrying the catalytic sites. Numerous in vitro studies have provided evidence that the 20S proteasome may degrade peptides of various lengths and even unfolded full-length polypeptide chains. However, a direct demonstration that the 20S proteasome may also cleave surface-attached immobilized peptides is lacking so far. To this end, we used a model system by coupling peptides from different source proteins covalently to the surface of glass beads and applied nanoLC/MS analysis to monitor the generation of proteolytic fragments in the presence of the 20S proteasome. Detectable amounts of cleavage products occurred within a few minutes indicating a much higher cleavage rate than observed with the same substrates in solution. Our finding lends support to the idea that proteasomes may directly degrade segments of membrane-bound proteins protruding into the aqueous phase.


Subject(s)
Immobilized Proteins/chemistry , Proteasome Endopeptidase Complex/chemistry , Amino Acid Sequence , Bacterial Toxins/chemistry , Heat-Shock Proteins/chemistry , Hemolysin Proteins/chemistry , Humans , Immediate-Early Proteins/chemistry , Molecular Sequence Data , Ovalbumin/chemistry , Peptide Fragments/chemistry , Proteolysis , Solid-Phase Synthesis Techniques
4.
Acta Trop ; 116(1): 61-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20525500

ABSTRACT

Tropomyosins of invertebrates are pan-allergens responsible for wide spread allergic reactions against seafood and arthropods. As invertebrate tropomyosins are highly conserved, helminth tropomyosins are likely to show properties similar to these medically important allergens. Studies with a monoclonal antibody, NR1, raised against tropomyosin of the rodent filarial nematode Acanthocheilonema viteae revealed a B cell epitope common to helminths and marine mollusks, which does not occur in vertebrate tropomyosin. This antibody detected tropomyosin of A. viteae, other filariids, nematodes, trematodes and a cestode, and recognized as well tropomyosin of oyster, squid and octopus, but not of arthropods and vertebrates. Immunohistological analyses of A. viteae, Onchocerca volvulus and other nematodes using NR1 showed that tropomyosin is located in the fibrillar part of the body wall muscles and the uterus, and is also conspicuous in muscles of the pharynx, the vagina and other organs of the nematodes. The abundance of a pan-allergen like tropomyosin in parasitic worms and the counterintuitive, but well documented protection against allergic reactivity by some chronic helminth infections is discussed.


Subject(s)
Allergens/immunology , Antibodies, Monoclonal/immunology , Dipetalonema/immunology , Invertebrates/immunology , Tropomyosin/immunology , Animals , Blotting, Western , Developing Countries , Dipetalonema/pathogenicity , Dipetalonema Infections/immunology , Dipetalonema Infections/pathology , Female , Humans , Hybridomas , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...