Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(9): e10456, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37664509

ABSTRACT

Understanding sexual reproduction and recruitment in seagrasses is crucial to their conservation and restoration. Flowering, seed production, seed recruitment, and seedling establishment data for the seagrass Posidonia australis was collected annually between 2013 and 2018 in meadows at six locations around Rottnest Island, Western Australia. Variable annual rates of flowering and seed production were observed among meadows between northern and southern sides of the island and among years. Meadows on the northern shore consistently flowered more intensely and produced more seeds across the years of the survey. Inter-site variation in clonal diversity and size of clones, seed production, wind and surface currents during pollen and seed release, and the large, but variable, impact of seed predation are likely the principal drivers of successful recruitment into established meadows and in colonizing unvegetated sands. The prolific but variable annual reproductive investment increases the probability of low levels of continuous recruitment from seed in this seagrass, despite high rates of abiotic and biotic disturbance at seedling, shoot, and patch scales. This strategy also imparts a level of ecological resilience to this long-lived and persistent species.

3.
Ecol Evol ; 13(3): e9900, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950371

ABSTRACT

Historical and contemporary processes drive spatial patterns of genetic diversity. These include climate-driven range shifts and gene flow mediated by biogeographical influences on dispersal. Assessments that integrate these drivers are uncommon, but critical for testing biogeographic hypotheses. Here, we characterize intraspecific genetic diversity and spatial structure across the entire distribution of a temperate seagrass to test marine biogeographic concepts for southern Australia. Predictive modeling was used to contrast the current Posidonia australis distribution to its historical distribution during the Last Glacial Maximum (LGM). Spatial genetic structure was estimated for 44 sampled meadows from across the geographical range of the species using nine microsatellite loci. Historical and contemporary distributions were similar, with the exception of the Bass Strait. Genetic clustering was consistent with the three currently recognized biogeographic provinces and largely consistent with the finer-scale IMCRA bioregions. Discrepancies were found within the Flindersian province and southwest IMCRA bioregion, while two regions of admixture coincided with transitional IMCRA bioregions. Clonal diversity was highly variable but positively associated with latitude. Genetic differentiation among meadows was significantly associated with oceanographic distance. Our approach suggests how shared seascape drivers have influenced the capacity of P. australis to effectively track sea level changes associated with natural climate cycles over millennia, and in particular, the recolonization of meadows across the Continental Shelf following the LGM. Genetic structure associated with IMCRA bioregions reflects the presence of stable biogeographic barriers, such as oceanic upwellings. This study highlights the importance of biogeography to infer the role of historical drivers in shaping extant diversity and structure.

4.
Mar Pollut Bull ; 187: 114480, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566516

ABSTRACT

Small ephemeral seagrass (Halophila ovalis) beds in the Swan-Canning Estuary, Western Australia, were sampled to determine if microplastics attach to seagrass blades and accumulate in higher concentrations in seagrass sediment compared to bare sediment. Three microplastics were observed attached to sampled seagrass blades (n = 108). Microplastics had a mean concentration in seagrass sediments of 1000 ± 100.37se particles kg-1 and in bare sediment of 972 ± 92.19se particles kg-1. ATR FTIR further verified 64.2 % of subsample particles as plastic (n = 28). This is the first known study to identify microplastics within the leaf canopy of H. ovalis however we could not support our hypothesis that this seagrass species acts as a sink for microplastic particles in sediments, as seen in studies on other seagrass species. The ability for seagrass habitats to trap and accumulate microplastics in sediments is likely influenced by species morphology, seagrass canopy density and life history.


Subject(s)
Hydrocharitaceae , Water Pollutants, Chemical , Microplastics , Plastics , Western Australia , Estuaries , Geologic Sediments , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis
5.
Environ Sci Process Impacts ; 23(11): 1663-1680, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34697621

ABSTRACT

Plastic pollution is a global environmental and human health issue, with plastics now ubiquitous in the environment and biota. Despite extensive international research, key knowledge gaps ("known unknowns") remain around ecosystem-scale and human health impacts of plastics in the environment, particularly in limnetic, coastal and marine systems. Here we review aquatic plastics research in three contrasting geographic and cultural settings, selected to present a gradient of heavily urbanised (and high population density) to less urbanised (and low population density) areas: China, the United Kingdom (UK), and Australia. Research from each country has varying environmental focus (for example, biota-focussed studies in Australia target various bird, fish, turtle and seal species, while UK and China-based studies focus on commercially important organisms such as bivalves, fish and decapods), and uses varying methods and reporting units (e.g. mean, median or range). This has resulted in aquatic plastics datasets that are hard to compare directly, supporting the need to converge on standardised sampling methods, and bioindicator species. While all the study nations show plastics contamination, often at high levels, datasets are variable and do not clearly demonstrate pollution gradients.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Environmental Monitoring , United Kingdom , Water Pollutants, Chemical/analysis
6.
J Phycol ; 57(1): 311-323, 2021 02.
Article in English | MEDLINE | ID: mdl-33150586

ABSTRACT

Ecklonia radiata is the main foundation species in Australian temperate reefs, yet little has been published on its reproduction and how this may change across its depth range (1-50+ m). In this study, we examined differences in sporophyte morphology and zoospore production during a reproductive season and across four depths (7, 15, 25, and 40 m). Additionally, we examined differences in germination rate, survival, and morphological traits of gametophytes obtained from these four depths, cultured under the same light and temperature conditions. Multivariate morphology of sporophytes differed significantly between deep (~40 m) and shallow sites (7 and 15 m), but individual morphological traits were not significantly different across depths. Total spore production was similar across depths but the peak of zoospore release was observed in February at 15 m of depth (6,154 zoospores · mm-2 of tissue) and the minimum observed in January at 7, 25, and 40 m (1,141, 987, and 214 zoospores · mm-2 of tissue, respectively). The source depth of zoospores did not have an influence in the germination rate or the survival of gametophytes, and only gametophytes sourced from 40 m sites presented significantly less surface area and number of branches. Overall, these results indicate that E. radiata's reproductive performance does not change across its depth range and that kelp beds reproducing in deeper areas may contribute to the replenishment of their shallow counterparts. We propose that deep kelps may constitute a mechanism of resilience against climate change and anthropogenic disturbances.


Subject(s)
Kelp , Australia , Climate Change , Reproduction , Seasons
7.
Proc Biol Sci ; 287(1928): 20200709, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32517616

ABSTRACT

Marine heatwaves (MHWs) have been documented around the world, causing widespread mortality of numerous benthic species on shallow reefs (less than 15 m depth). Deeper habitats are hypothesized to be a potential refuge from environmental extremes, though we have little understanding of the response of deeper benthic communities to MHWs. Here, we show how increasing depth moderates the response of seaweed- and coral-dominated benthic communities to an extreme MHW across a subtropical-temperate biogeographical transition zone. Benthic community composition and key habitat-building species were characterized across three depths (15, 25 and 40 m) before and several times after the 2011 Western Australian MHW to assess resistance during and recovery after the heatwave. We found high natural variability in benthic community composition along the biogeographic transition zone and across depths with a clear shift in the composition after the MHW in shallow (15 m) sites but a lot less in deeper communities (40 m). Most importantly, key habitat-building seaweeds such as Ecklonia radiata and Syctothalia dorycarpa which had catastrophic losses on shallow reefs, remained and were less affected in deeper communities. Evidently, deep reefs have the potential to act as a refuge during MHWs for the foundation species of shallow reefs in this region.


Subject(s)
Aquatic Organisms/physiology , Biodiversity , Coral Reefs , Extreme Heat , Animals , Seaweed
8.
Mol Ecol ; 27(24): 5019-5034, 2018 12.
Article in English | MEDLINE | ID: mdl-30427083

ABSTRACT

Movement is fundamental to the ecology and evolutionary dynamics within species. Understanding movement through seed dispersal in the marine environment can be difficult due to the high spatial and temporal variability of ocean currents. We employed a mutually enriching approach of population genetic assignment procedures and dispersal predictions from a hydrodynamic model to overcome this difficulty and quantify the movement of dispersing floating fruit of the temperate seagrass Posidonia australis Hook.f. across coastal waters in south-western Australia. Dispersing fruit cohorts were collected from the water surface over two consecutive years, and seeds were genotyped using microsatellite DNA markers. Likelihood-based genetic assignment tests were used to infer the meadow of origin for seed cohorts and individuals. A three-dimensional hydrodynamic model was coupled with a particle transport model to simulate the movement of fruit at the water surface. Floating fruit cohorts were mainly assigned genetically to the nearest meadow, but significant genetic differentiation between cohort and most likely meadow of origin suggested a mixed origin. This was confirmed by genetic assignment of individual seeds from the same cohort to multiple meadows. The hydrodynamic model predicted 60% of fruit dispersed within 20 km, but that fruit was physically capable of dispersing beyond the study region. Concordance between these two independent measures of dispersal provides insight into the role of physical transport for long distance dispersal of fruit and the consequences for spatial genetic structuring of seagrass meadows.


Subject(s)
Alismatales/genetics , Genetics, Population , Hydrodynamics , Seed Dispersal , Australia , Fruit , Genotype , Likelihood Functions , Microsatellite Repeats , Models, Theoretical , Oceans and Seas , Water Movements
9.
Science ; 353(6295): 169-72, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27387951

ABSTRACT

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.


Subject(s)
Anthozoa/physiology , Climate Change , Coral Reefs , Extinction, Biological , Kelp/physiology , Tropical Climate , Animals , Australia , Fishes , Seawater , Temperature
10.
Mar Pollut Bull ; 101(2): 594-9, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26541985

ABSTRACT

We investigated the phenology and spatial patterns in Halophila decipiens by assessing biomass, reproduction and seed density in ~400 grab samples collected across nine sites (8 to 14 m water depth) between June 2011 and December 2012. Phenology correlated with light climate which is governed by the summer monsoon (wet period). During the wet period, sedimentary seed banks prevailed, varying spatially at both broad and fine scales, presenting a source of propagules for re-colonisation following the unfavourable growing conditions of the monsoon. Spatial patterns in H. decipiens biomass following monsoon conditions were highly variable within a landscape that largely comprised potential seagrass habitat. Management strategies for H. decipiens and similar transient species must recognise the high temporal and spatial variability of these populations and be underpinned by a framework that emphasises vulnerability assessments of different life stages instead of relying solely on thresholds for standing stock at fixed reference sites.


Subject(s)
Hydrocharitaceae/physiology , Aquatic Organisms/physiology , Biomass , Ecosystem , Hydrocharitaceae/growth & development , Salinity , Seeds/physiology , Spatio-Temporal Analysis , Tropical Climate , Western Australia
11.
PLoS One ; 7(4): e34476, 2012.
Article in English | MEDLINE | ID: mdl-22506021

ABSTRACT

BACKGROUND: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. METHODS AND FINDINGS: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km(2) area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2) of 64 and an 80% correct classification. CONCLUSIONS: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.


Subject(s)
Ecosystem , Fisheries/methods , Marine Biology/methods , Models, Biological , Palinuridae , Animals , Shellfish , Water , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...