Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 9: 595754, 2021.
Article in English | MEDLINE | ID: mdl-33763414

ABSTRACT

Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain.

2.
Front Mol Neurosci ; 11: 122, 2018.
Article in English | MEDLINE | ID: mdl-29706866

ABSTRACT

Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin-Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli.

3.
Mol Cell Biol ; 34(10): 1878-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24615015

ABSTRACT

Proper cell growth is a prerequisite for maintaining repeated cell divisions. Cells need to translate information about intracellular nutrient availability and growth cues from energy-sensing organs into growth-promoting processes, such as sufficient supply with ribosomes for protein synthesis. Mutations in the mushroom body miniature (mbm) gene impair proliferation of neural progenitor cells (neuroblasts) in the central brain of Drosophila melanogaster. Yet the molecular function of Mbm has so far been unknown. Here we show that mbm does not affect the molecular machinery controlling asymmetric cell division of neuroblasts but instead decreases their cell size. Mbm is a nucleolar protein required for small ribosomal subunit biogenesis in neuroblasts. Accordingly, levels of protein synthesis are reduced in mbm neuroblasts. Mbm expression is transcriptionally regulated by Myc, which, among other functions, relays information from nutrient-dependent signaling pathways to ribosomal gene expression. At the posttranslational level, Mbm becomes phosphorylated by casein kinase 2 (CK2), which has an impact on localization of the protein. We conclude that Mbm is a new part of the Myc target network involved in ribosome biogenesis, which, together with CK2-mediated signals, enables neuroblasts to synthesize sufficient amounts of proteins required for proper cell growth.


Subject(s)
Casein Kinase II/metabolism , Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , Neural Stem Cells/physiology , Nuclear Proteins/physiology , Proto-Oncogene Proteins c-myc/metabolism , Ribosomes/metabolism , Animals , Asymmetric Cell Division , Base Sequence , Brain/cytology , Cell Line , Cell Nucleolus/metabolism , Cell Size , Drosophila melanogaster/cytology , Gene Expression Regulation , Larva/cytology , Larva/metabolism , Male , Phosphorylation , Protein Processing, Post-Translational , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Transcriptome
4.
J Neurogenet ; 23(1-2): 42-7, 2009.
Article in English | MEDLINE | ID: mdl-19107630

ABSTRACT

Single-gene mutants of Drosophila have not only increased our understanding of the biochemical processes underlying learning and memory processes, but also established structure-function relationships. The first relevant mutants were identified by Martin Heisenberg nearly 30 years ago in a screen for altered adult brain structure and were used to link the mushroom bodies in the central brain with olfactory learning and memory processes. Because the observed structural defects in the adult are the consequence of deregulated developmental processes, the characterization of these mutants can also provide insight into the genetic programs underlying the establishment, maintenance, and remodeling of functional neuronal circuits. As an example for the value of this approach, we trace the history of mushroom body defect (mud), from the original anatomical description of the mutation to most recent insights of the function of the protein as a regulator of neuronal progenitor cell division.


Subject(s)
Brain/embryology , Drosophila Proteins/genetics , Drosophila/genetics , Membrane Proteins/genetics , Mushroom Bodies/embryology , Mutation , Nerve Tissue Proteins/genetics , Animals , Brain/cytology , Cell Division/genetics , Drosophila Proteins/physiology , Genes, Insect , Membrane Proteins/physiology , Mushroom Bodies/cytology , Nerve Tissue Proteins/physiology , Neurogenesis/genetics , Phenotype
5.
J Exp Biol ; 210(Pt 12): 2121-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17562885

ABSTRACT

We tested the hypothesis that a negative fitness-density relationship exists in haematophagous ectoparasites. We studied the effect of flea density on the number of blood meals necessary for starting oviposition and egg production in Xenopsylla conformis and Xenopsylla ramesis when exploiting two rodent hosts, Meriones crassus and Gerbillus dasyurus. The number of blood meals taken by a flea prior to first oviposition was similar in both flea species but was dependent on flea density and differed significantly between hosts. When parasitizing G. dasyurus, females of both flea species required a similar number of blood meals to start oviposition, independent of density. By contrast, fleas on M. crassus at higher densities needed less blood meals than at lower densities. Egg production of female fleas differed significantly between flea and host species and was affected by flea density. X. ramesis produced more eggs than X. conformis. When parasitizing G. dasyurus, density did not affect the number of eggs produced by X. conformis, however, when on M. crassus, this flea produced significantly less eggs at the highest density. The number of eggs produced by X. ramesis at high densities was significantly lower than at low densities when it parasitized either host species. Results of this study demonstrated that reproductive success of fleas was density dependent and, in general, decreased with an increase in density. However, the effect of density on reproductive performance was manifested differently on different host species.


Subject(s)
Gerbillinae/parasitology , Siphonaptera/physiology , Animals , Feeding Behavior/physiology , Female , Host-Parasite Interactions , Male , Oviposition/physiology , Population Density , Reproduction/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...