Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35410093

ABSTRACT

We gathered recent (2010-2019) data on the VOC and formaldehyde levels in Finnish non-industrial indoor work environments. The data comprised 9789 VOC and 1711 formaldehyde samples collected from the indoor air of offices, schools, kindergartens, and healthcare offices. We assessed the health risks by comparing the measured concentrations to the health-based RW I/II and EU-LCI reference values. The concentrations of individual VOCs and formaldehyde in these work environments were generally very low and posed no health risks. Total VOC concentration (TVOC) as well as concentrations of several individual compounds, including aromatic compounds, alkanes, 2-ethyl-1-hexanol, and formaldehyde, showed clearly decreasing trends. In contrast, several aldehydes, acids, and a few other compounds showed increasing trends. However, the increasing trends did not seem to affect the higher ends of the distributions, as the 95th percentile values remained fairly stable or decreased over the years. The VOC patterns in the environments of the offices, schools, kindergartens, and healthcare offices varied, probably reflecting the differences in typical activities and the use of materials. However, we do not expect these differences to be relevant to health outcomes.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Aldehydes , Environmental Monitoring , Finland , Formaldehyde/analysis , Volatile Organic Compounds/analysis , Workplace
2.
Indoor Air ; 29(6): 903-912, 2019 11.
Article in English | MEDLINE | ID: mdl-31348556

ABSTRACT

Degrading 2-ethylhexyl-containing PVC floorings (eg DEHP-PVC floorings) and adhesives emit 2-ethylhexanol (2-EH) in the indoor air. The danger of flooring degradation comes from exposing occupants to harmful phthalates plasticisers (eg DEHP), but not from 2-EH as such. Since the EU banned the use of phthalates in sensitive applications, the market is shifting to use DEHP-free and alternative types of plasticisers in PVC products. However, data on emissions from DEHP-free PVC floorings are scarce. This study aimed at assessing the surface and bulk emissions of two DEHP-free PVC floorings over three years. The floorings were glued on the screed layer of concrete casts at 75%, 85%, and 95% RH. The volatile organic compounds (VOCs) were actively sampled using FLEC (surface emissions) and micro-chamber/thermal extractor (µ-CTE, bulk emissions) onto Tenax TA adsorbents and analyzed with TD-GC-MS. 2-EH, C9-alcohols, and total volatile organic compound (TVOC) emissions are reported. Emissions at 75% and 85% RH were similar. As expected, the highest emissions occurred at 95% RH. 2-EH emissions originated from the adhesive. Because the two DEHP-free floorings tested emitted C9-alcohols at all tested RH, it makes the detection of flooring degradation harder, particularly if the adhesive used does not emit 2-EH.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Floors and Floorcoverings , Adhesives/analysis , Alcohols/analysis , Environmental Monitoring , Hexanols/analysis , Humans , Plasticizers/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...