Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mycopathologia ; 182(11-12): 1025-1036, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28795317

ABSTRACT

Indoor mold due to water damage causes serious human respiratory disorders, and the remediation to homes, schools, and businesses is a major expense. Prevention of mold infestation of building materials would reduce health problems and building remediation costs. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit yeasts and a limited number of filamentous fungi. The purpose of this research was to determine the possible inhibitory activity of nonsteroidal anti-inflammatory drugs (NSAIDs) on germination, fungal growth, and reproduction of Chaetomium globosum and other important filamentous fungi that occur in water-damaged buildings. Several NSAIDs were found to inhibit C. globosum germination, growth, and reproduction. The most effective NSAIDs inhibiting C. globosum were ibuprofen, diflunisal, and diclofenac. Fusarium oxysporum, Fusarium solani, Aspergillus niger, and Stachybotrys atra were also tested on the various media with similar results obtained. However, F. oxysporum and A. niger exhibited a higher level of resistance to aspirin and NaSAL when compared to the C. globosum isolates. The inhibition exhibited by NSAIDs was variable depending on growth media and stage of fungal development. These compounds have a great potential of inhibiting fungal growth on building materials such as gypsum board. Formulations of sprays or building materials with NSAID-like chemical treatments may hold promise in reducing mold in homes and buildings.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antifungal Agents/pharmacology , Cell Proliferation/drug effects , Chaetomium/growth & development , Germination/drug effects , Acetaminophen/pharmacology , Aspergillus/drug effects , Aspergillus/growth & development , Aspirin/pharmacology , Chaetomium/drug effects , Diclofenac/pharmacology , Diflunisal/pharmacology , Fusarium/drug effects , Fusarium/growth & development , Humans , Ibuprofen/pharmacology , Lung Diseases, Fungal/prevention & control , Microbial Sensitivity Tests , Mycoses/prevention & control , Stachybotrys/drug effects , Stachybotrys/growth & development
2.
Insect Biochem Mol Biol ; 81: 19-31, 2017 02.
Article in English | MEDLINE | ID: mdl-27939924

ABSTRACT

Cellular triglycerides (TG) are stored in cytosolic lipid droplets (LDs). Perilipins (PLIN) are a group of LD-proteins that play important roles in the assembly and transport of LDs and in TG metabolism. Two members of the PLIN family are found in insects (PLIN1 & 2 or Lsd1 & 2). We have cloned and expressed Manduca sexta PLIN2 (MsPLIN2), and studied developmental and nutritional changes in the expression of PLIN2. Nutritional changes induced fast alterations in PLIN2 mRNA and protein levels in fat body and midgut of the feeding larvae. The relationship observed between PLIN2 expression and TG synthesis in both larval fat body and midgut suggests that PLIN2 is needed when tissues are accumulating TG. However, when the fat body was storing TG at maximal capacity, MsPLIN2 levels declined. This unexpected finding suggests the occurrence of alternative mechanism/s to shield TG from the action of lipases in M. sexta LDs. In addition, it implies that the cellular level of lipid storage could be modulating MsPLIN2 expression and/or degradation. The study also confirmed that MsPLIN2 was most abundant in the adult fat body, which is characterized by a high rate of TG hydrolysis and lipid mobilization. Whether MsPLIN2 is directly involved in lipolysis and/or the secretion of lipids in the fat body of adult of M. sexta is unknown at this time. Nonetheless, the coexistence of high PLIN2 and lipolysis levels suggests a complex role for MsPLIN2. Altogether, we found that MsPLIN2 is needed when the synthesis of glycerides, DG and TG, is active even if the insect is accumulating or consuming TG.


Subject(s)
Fat Body/metabolism , Lipid Metabolism , Manduca/metabolism , Perilipin-2/metabolism , Animals , Gastrointestinal Tract/metabolism , Manduca/growth & development , Sequence Analysis, DNA , Triglycerides/metabolism
3.
Insect Biochem Mol Biol ; 42(5): 305-20, 2012 May.
Article in English | MEDLINE | ID: mdl-22245367

ABSTRACT

The lipid droplets (LDs) are intracellular organelles mainly dedicated to the storage and provision of fatty acids. To accomplish these functions the LDs interact with other organelles and cytosolic proteins. In order to explore possible correlations between the physiological states of cells and the protein composition of LDs we have determined and compared the proteomic profiles of lipid droplets isolated from the fat bodies of 5th-instar larvae and adult Manduca sexta insects and from ovaries. These LD-rich tissues represent three clearly distinct metabolic states in regard to lipid metabolism: 1) Larval fat body synthesizes fatty acids (FA) and accumulates large amounts as triglyceride (TG); 2) Fat body from adult insects provides FA to support reproduction and flight; 3) Ovaries do not synthesize FA, but accumulate considerable amounts of TG in LDs. Major qualitative and semi-quantitative variations in the protein compositions of the LDs isolated from these three tissues were observed by MS/MS and partially validated by immuno-blotting. The differences observed included changes in the abundance of lipid droplet specific proteins, cytosolic proteins, mitochondrial proteins and also proteins associated with the machinery of protein synthesis. These results suggest that changes in the interaction of LDs with other organelles and cytosolic proteins are tightly related to the physiological state of cells. Herein, we summarize and compare the protein compositions of three subtypes of LDs and also describe for the first time the proteomic profile of LDs from an insect ovary. The compositions and compositional differences found among the LDs are discussed to provide a platform for future studies on the role of LDs, and their associated proteins, in cellular metabolism.


Subject(s)
Fat Body/metabolism , Insect Proteins/metabolism , Lipid Metabolism , Manduca/metabolism , Animals , Apolipoproteins/metabolism , Fat Body/ultrastructure , Female , Histones/metabolism , Larva/metabolism , Lipoproteins/metabolism , Manduca/chemistry , Manduca/growth & development , Mitochondrial Proteins/metabolism , Ovary/metabolism , Proteome , Proteomics , Receptors, Cytoplasmic and Nuclear/metabolism
4.
Mol Cell Biochem ; 348(1-2): 155-64, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21069432

ABSTRACT

Cellular uptake and resecretion of apoA-I (apoA-I recycling) could be an important factor in determining the circulating plasma levels of apoA-I and/or HDL. Using a novel method to study protein recycling, we have recently demonstrated recycling of apoA-I by adipocytes and suggested that this is a receptor mediated process independent of ABCA1 function. In the present study, it is shown that apoA-I recycling by adipocytes can be blocked by a monoclonal antibody against the ß-subunit of ATP synthase, a protein that had been previously identified as an apoA-I receptor. Investigation of the cellular recycling of two other proteins, an apolipoprotein and a small globular protein, showed that recycling of apoA-I is a selective process. The present study also shows that blocking apoA-I recycling has no effect on the rate of apoA-I-induced cholesterol or phospholipid efflux. It is concluded that cellular recycling of apoA-I is a selective process that involves the ectopically expressed ß-subunit of ATP synthase. The physiological function of apoA-I recycling remains to be elucidated. However, this study shows that the process of apoA-I uptake and resecretion is not required for apoA-I lipidation.


Subject(s)
Adipocytes/enzymology , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Phospholipids/metabolism , 3T3-L1 Cells , Animals , Antibodies, Monoclonal , Apolipoprotein A-I/genetics , Apolipoproteins/genetics , Apolipoproteins/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Humans , Kinetics , Mice , Mitochondrial Proton-Translocating ATPases/immunology , Protein Transport , Recombinant Fusion Proteins/metabolism , Thioredoxins/metabolism , Transfection
5.
Mol Cell Biochem ; 343(1-2): 115-24, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20535530

ABSTRACT

Adipose tissue is a major reservoir of cholesterol and, as such, it may play a significant role in cholesterol homeostasis. The aims of this study were to obtain a quantitative characterization of apolipoprotein A-I (apoA-I)-dependent lipid efflux from adipocytes and examine the role of ATP-binding cassette transporter A1 (ABCA1) in this process. The rates of apoA-I-induced cholesterol and phospholipid efflux were determined and normalized by cellular protein or ABCA1 levels. In order to allow a comparative analysis, parallel experiments were also performed in macrophages. These studies showed that apoA-I induces cholesterol efflux from adipocytes at similar rates as from macrophages. Enhancement of the expression of ABCA1 increased the rates of cholesterol efflux from both adipocytes and macrophages. The results also suggested that a non-ABCA1-dependent mechanism could make significant contributions to the rate of apoA-I-dependent cholesterol efflux when the expression levels of ABCA1 are low. Furthermore, the study of the effect of inhibitors of lipid efflux showed that glyburide and brefeldin A, which affect ABCA1 function, exerted strong and similar inhibitory effects on lipid efflux from both adipocytes and macrophages, whereas BLT1, an SRB-I inhibitor, only exerted a moderate inhibition. Overall these studies suggest that ABCA1 plays a major role in apoA-I-dependent lipid efflux from adipocytes and showed high similarities between the abilities of adipocytes and macrophages to release cholesterol in an apoA-I-dependent fashion.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Adipocytes/metabolism , Apolipoprotein A-I/metabolism , Lipid Metabolism , 3T3-L1 Cells , ATP Binding Cassette Transporter 1 , Animals , Biological Transport , Mice , Scavenger Receptors, Class B/metabolism
6.
Insect Biochem Mol Biol ; 40(2): 91-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20060045

ABSTRACT

Fatty acids stored as triglycerides (TG) in the fat body serve as precursor in multiple processes including energy production and synthesis of cellular components. Mobilization of fatty acids from TG depends on the action of lipases. The fat body triglyceride lipase from Manduca sexta, MsTGL, is the only insect lipase that has been purified and characterized, so far. A TGL cDNA from M. sexta fat body encoding a 649 amino acid protein was cloned and its identity confirmed by mass spectrometry and Edman sequencing data of the purified protein. The protein sequence has conserved domains and residues of potential importance for the function and regulation of TGL activity. The expression of TGL and the lipase activity of fat body homogenates were studied in several developmental stages of M. sexta. TG-hydrolase activity of fat body increased as larva grew to the last instar and, then, decreased to minimal levels during pupa stage. Lipase activity was progressively restored in adult insects and reached maximum values at this stage. The fat body lipase activity from adult insects, 1-2 day after emergence, was 9-fold higher than that from 2 to 3 days old 5th-instar larvae. A good correlation was found between the abundance of TGL protein and the lipase activity of fat body homogenates. This correlation and the expression pattern of TGL throughout development are consistent with the notion that TGL is the main fat body TG lipase of M. sexta.


Subject(s)
DNA, Complementary/genetics , Fat Body/enzymology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Lipase/genetics , Manduca/metabolism , Animals , Base Sequence , Blotting, Northern , Cloning, Molecular , Male , Manduca/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Homology, Amino Acid
7.
Insect Biochem Mol Biol ; 38(11): 993-1000, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18793726

ABSTRACT

Adipokinetic hormone (AKH) is the main hormone involved in the acute regulation of hemolymph lipid levels in several insects. In adult Manduca sexta AKH promotes a rapid phosphorylation of "Lipid storage protein-1", Lsd1, and a concomitant activation of the rate of hydrolysis of triglycerides by the main fat body lipase. In contrast, in the larval stage AKH modulates hemolymph trehalose levels. The present study describes the sequence of a full-length Lsd1 cDNA obtained from M. sexta fat body and investigates a possible link between Lsd1 expression and the distinct effects of AKH in larva and adult insects. The deduced protein sequence showed a high degree of conservation compared to other insect Lsd1s, particularly in the central region of the protein (amino acids 211-276) in which the predicted lipid binding helices are found. Lsd1 was absent in feeding larva and its abundance progressively increased as the insect develops from the non-feeding larva to adult. Contrasting with the levels of protein, Lsd1 transcripts were maximal during the feeding larval stages. The subcellular distribution of Lsd1 showed that the protein exclusively localizes in the lipid droplets. Lsd1 was found in the fat body but it was undetectable in lipid droplets isolated from oocytes or embryos. The present study suggests a link between AKH-stimulated lipolysis in the fat body and the expression of Lsd1.


Subject(s)
Insect Hormones/physiology , Insect Proteins/metabolism , Lipid Metabolism , Manduca/metabolism , Oligopeptides/physiology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Conserved Sequence , DNA, Complementary/chemistry , Fat Body/metabolism , Insect Hormones/pharmacology , Insect Proteins/analysis , Insect Proteins/genetics , Manduca/drug effects , Manduca/genetics , Manduca/growth & development , Molecular Sequence Data , Oligopeptides/pharmacology , Pyrrolidonecarboxylic Acid/pharmacology , Sequence Alignment
8.
Arch Biochem Biophys ; 478(2): 161-6, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18708026

ABSTRACT

A possible role of cellular uptake and re-secretion of apoA-I in the mechanism of cholesterol efflux induced by apoA-I was investigated using a novel experimental approach. Incubation of adipocytes with a recombinant human apoA-I containing a consensus PKA phosphorylation site, pka-ApoA-I, leads to the appearance of phosphorylated protein in the cell culture medium unambiguously proving cellular uptake and re-secretion of pka-ApoA-I. Phosphorylation of apoA-I is abolished by PKA inhibitors and enhanced by PKA activators demonstrating the specific involvement of PKA. Studies on the concentration dependence of pka-apoA-I phosphorylation and competition experiments with human apoA-I suggest that apolipoprotein uptake is a receptor mediated process. A possible role of apoA-I recycling in the mechanism of cholesterol efflux was investigated by determining the rates of apoA-I induced cholesterol efflux and apoA-I recycling in the presence and in the absence of Brefeldin A (BFA). The studies showed that BFA strongly inhibits cholesterol efflux without affecting the rate of apoA-I recycling. Since BFA affects vesicular trafficking of ABCA1, this study suggests that the interaction of apoA-I with ABCA1 does not mediate apolipoprotein uptake and re-secretion. This result suggests that lipidation of apoA-I and apolipoprotein uptake/re-secretion are independent processes.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Apolipoprotein A-I/metabolism , Brefeldin A/pharmacology , Cholesterol/metabolism , 3T3-L1 Cells , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Animals , Apolipoprotein A-I/blood , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/genetics , Binding Sites/genetics , Biological Transport, Active/drug effects , Humans , Kinetics , Mice , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...