Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 42(7): 2245-2258, 2019 07.
Article in English | MEDLINE | ID: mdl-30820970

ABSTRACT

The degree of plant iso/anisohydry, a widely used framework for classifying species-specific hydraulic strategies, integrates multiple components of the whole-plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD-induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade-off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.


Subject(s)
Plant Leaves/physiology , Plant Physiological Phenomena , Plant Stems/physiology , Plant Stomata/physiology , Kinetics , Plant Leaves/anatomy & histology , Plant Stems/cytology , Plant Transpiration/physiology , Plants/anatomy & histology , Species Specificity , Water , Wood/anatomy & histology , Xylem/anatomy & histology , Xylem/cytology , Xylem/physiology
2.
Plant Cell Environ ; 40(8): 1618-1628, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28426140

ABSTRACT

Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed.


Subject(s)
Gases/metabolism , Photosynthesis , Plant Stomata/physiology , Plants/metabolism , Water/physiology , Kinetics , Light , Nitrogen/metabolism , Photosynthesis/radiation effects , Plant Stomata/radiation effects , Species Specificity , Time Factors
3.
Ecol Lett ; 19(11): 1343-1352, 2016 11.
Article in English | MEDLINE | ID: mdl-27604411

ABSTRACT

The concept of iso- vs. anisohydry has been used to describe the stringency of stomatal regulation of plant water potential (ψ). However, metrics that accurately and consistently quantify species' operating ranges along a continuum of iso- to anisohydry have been elusive. Additionally, most approaches to quantifying iso/anisohydry require labour-intensive measurements during prolonged drought. We evaluated new and previously developed metrics of stringency of stomatal regulation of ψ during soil drying in eight woody species and determined whether easily-determined leaf pressure-volume traits could serve as proxies for their degree of iso- vs. anisohydry. Two metrics of stringency of stomatal control of ψ, (1) a 'hydroscape' incorporating the landscape of ψ over which stomata control ψ, and (2) the slope of the daily range of ψ as pre-dawn ψ declined, were strongly correlated with each other and with the leaf osmotic potential at full and zero turgor derived from pressure-volume curves.


Subject(s)
Magnoliopsida/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Water/metabolism , Environment, Controlled
4.
Ecol Evol ; 5(17): 3557-69, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26380686

ABSTRACT

Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use.

5.
Tree Physiol ; 30(1): 23-31, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19959599

ABSTRACT

Nighttime transpirational water loss from C(3) trees occurs without carbon gain and is both common and substantial. However, the magnitude of this water loss varies and a better understanding of the environmental factors driving this variation is needed. We investigated the response of nighttime conductance (g(night)) and transpiration (E(night)) to soil nitrogen limitation. We used instantaneous gas exchange measurements in greenhouse studies of Populus angustifolia James (narrowleaf cottonwood) and Populus balsamifera L. spp. trichocarpa (Torr. & A. Gray ex Hook.) Brayshaw (black cottonwood). g(night) for sufficiently watered plants ranged from 0.045 to 0.308 mol m(-2) s(-1) for P. balsamifera and 0.037 to 0.188 mol m(-2) s(-1) for P. angustifolia, which was much larger than minimum leaf conductance (g(min); up to 0.005 mol m(-2) s(-1) in the dark). Long-term nitrogen limitation sufficient to substantially reduce biomass did not affect g(night) or E(night) when potentially confounding water stress effects were eliminated. We conclude that nighttime water loss from two Populus species is large and although it is under stomatal control is not regulated at night in response to soil nitrogen availability.


Subject(s)
Nitrogen/analysis , Plant Transpiration/physiology , Populus/physiology , Soil/analysis , Biomass , Circadian Rhythm/physiology , Gases/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Stems/chemistry , Plant Stems/growth & development , Populus/classification , Populus/growth & development , Species Specificity
6.
Plant Cell Environ ; 32(8): 1060-70, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19422615

ABSTRACT

C(3) plants dominate many landscapes and are critically important for ecosystem water cycling. At night, plant water losses can include transpiration (E(night)) from the canopy and hydraulic redistribution (HR) from roots. We tested whether E(night) limits the magnitude of HR in a greenhouse study using Artemisia tridentata, Helianthus anomalus and Quercus laevis. Plants were grown with their roots split between two compartments. HR was initiated by briefly withholding all water, followed by watering only one rooting compartment. Under study conditions, all species showed substantial E(night) and HR (highest minus lowest soil water potential [Psi(s)] during a specified diel period). Suppressing E(night) by canopy bagging increased HR during the nightly bagging period (HR(N)) for A. tridentata and H. anomalus by 73 and 33% respectively, but did not affect HR(N) by Q. laevis. Total daily HR (HR(T)) was positively correlated with the Psi(s) gradient between the rooting compartments, which was correlated with light and/or atmospheric vapour pressure deficit (VPDa) the prior day. For A. tridentata, HR(T) was negatively correlated with night-time VPDa. Ecological implications of the impact of E(night) on HR may include decreased plant productivity during dry seasons, altered ecosystem water flux patterns and reduced nutrient cycling in drying soils.


Subject(s)
Photoperiod , Plant Roots/physiology , Plant Transpiration/physiology , Water/metabolism , Artemisia/physiology , Helianthus/physiology , Plant Leaves/physiology , Quercus/physiology , Soil/analysis , Vapor Pressure
7.
Plant Physiol ; 143(1): 145-55, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17142487

ABSTRACT

We investigated the response of Helianthus species nighttime conductance (g(night)) and transpiration (E(night)) to soil nutrient and water limitations in nine greenhouse studies. The studies primarily used wild Helianthus annuus, but also included a commercial and early domesticate of H. annuus and three additional wild species (Helianthus petiolaris Nutt., Helianthus deserticola Heiser, and Helianthus anomalus Blake). Well-watered plants of all species showed substantial g(night) (0.023-0.225 mol m(-2) s(-1)) and E(night) (0.29-2.46 mmol m(-2) s(-1)) measured as instantaneous gas exchange. Based on the potential for transpiration to increase mass flow of mobile nutrients to roots, we hypothesized that g(night) and E(night) would increase under limiting soil nutrients but found no evidence of responses in all six studies testing this. Based on known daytime responses to water limitation, we hypothesized that g(night) and E(night) would decrease when soil water availability was limited, and results from all four studies testing this supported our hypothesis. We also established that stomatal conductance at night was on average 5 times greater than cuticular conductance. Additionally, g(night) and E(night) varied nocturnally and across plant reproductive stages while remaining relatively constant as leaves aged. Our results further the ability to predict conditions under which nighttime water loss will be biologically significant and demonstrate that for Helianthus, g(night) can be regulated.


Subject(s)
Helianthus/physiology , Plant Transpiration , Soil , Water/metabolism , Biomass , Darkness , Helianthus/growth & development , Helianthus/metabolism , Nitrogen/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...