Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 68(2): 561-573, 2018 08.
Article in English | MEDLINE | ID: mdl-29406621

ABSTRACT

Cholangiocytes normally express primary cilia, a multisensory organelle that detects signals from the cellular environment. Cilia are significantly reduced in cholangiocarcinoma (CCA) by a mechanism involving overexpression of histone deacetylase 6 (HDAC6). Despite HDAC6 overexpression in CCA, we found no differences in its mRNA level, suggesting a posttranscriptional regulation, possibly involving microRNAs (miRNAs). Here, we describe that at least two HDAC6-targeting miRNAs, miR-433 and miR-22, are down-regulated in CCA both in vitro and in vivo. Experimental restoration of these miRNAs in CCA cells reduced HDAC6 expression, induced ciliary restoration, and decreased the malignant phenotype. Furthermore, in contrast to the mature forms, levels of precursor forms of these miRNAs were higher in CCA compared to normal cholangiocytes and accumulated in the nuclei, suggesting a defective nuclear export. We assessed the expression of Exportin-5, the protein responsible for transporting miRNA precursors out of the nucleus, and found it to be reduced by 50% in CCA compared to normal cholangiocytes. Experimental overexpression of Exportin-5 in CCA cells restored precursor and mature forms of these miRNAs to normal levels, inducing a decrease in the expression of HDAC6 and a decrease in the malignant phenotype. Conversely, short hairpin RNA (shRNA) depletion of Exportin-5 in normal cholangiocytes resulted in increased nuclear retention of precursor miRNAs, decreased mature miRNAs, increased cell proliferation, and shorter cilia. CONCLUSION: These data suggest that down-regulated Exportin-5 impairs the nuclear export of miR-433 and miR-22 precursor forms, causing a decrease in levels of mature miR-433 and miR-22 forms, and leading to overexpression of HDAC6 and ciliary loss in CCA. (Hepatology 2018).


Subject(s)
Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/metabolism , Histone Deacetylase 6/metabolism , MicroRNAs/metabolism , Bile Duct Neoplasms/pathology , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/pathology , Cilia , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Karyopherins/metabolism , Real-Time Polymerase Chain Reaction
2.
Hepatology ; 66(4): 1197-1218, 2017 10.
Article in English | MEDLINE | ID: mdl-28543567

ABSTRACT

Hepatic cystogenesis in polycystic liver disease is associated with increased levels of cyclic adenosine monophosphate (cAMP) in cholangiocytes lining liver cysts. Takeda G protein receptor 5 (TGR5), a G protein-coupled bile acid receptor, is linked to cAMP and expressed in cholangiocytes. Therefore, we hypothesized that TGR5 might contribute to disease progression. We examined expression of TGR5 and Gα proteins in cultured cholangiocytes and in livers of animal models and humans with polycystic liver disease. In vitro, we assessed cholangiocyte proliferation, cAMP levels, and cyst growth in response to (1) TGR5 agonists (taurolithocholic acid, oleanolic acid [OA], and two synthetic compounds), (2) a novel TGR5 antagonist (m-tolyl 5-chloro-2-[ethylsulfonyl] pyrimidine-4-carboxylate [SBI-115]), and (3) a combination of SBI-115 and pasireotide, a somatostatin receptor analogue. In vivo, we examined hepatic cystogenesis in OA-treated polycystic kidney rats and after genetic elimination of TGR5 in double mutant TGR5-/- ;Pkhd1del2/del2 mice. Compared to control, expression of TGR5 and Gαs (but not Gαi and Gαq ) proteins was increased 2-fold to 3-fold in cystic cholangiocytes in vitro and in vivo. In vitro, TGR5 stimulation enhanced cAMP production, cell proliferation, and cyst growth by ∼40%; these effects were abolished after TGR5 reduction by short hairpin RNA. OA increased cystogenesis in polycystic kidney rats by 35%; in contrast, hepatic cystic areas were decreased by 45% in TGR5-deficient TGR5-/- ;Pkhd1del2/del2 mice. TGR5 expression and its colocalization with Gαs were increased ∼2-fold upon OA treatment. Levels of cAMP, cell proliferation, and cyst growth in vitro were decreased by ∼30% in cystic cholangiocytes after treatment with SBI-115 alone and by ∼50% when SBI-115 was combined with pasireotide. CONCLUSION: TGR5 contributes to hepatic cystogenesis by increasing cAMP and enhancing cholangiocyte proliferation; our data suggest that a TGR5 antagonist alone or concurrently with somatostatin receptor agonists represents a potential therapeutic approach in polycystic liver disease. (Hepatology 2017;66:1197-1218).


Subject(s)
Cyclic AMP/metabolism , Cysts/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Liver Diseases/metabolism , Pyrimidines/therapeutic use , Receptors, G-Protein-Coupled/metabolism , Adaptor Proteins, Signal Transducing , Animals , Cell Proliferation/drug effects , Cysts/drug therapy , Drug Evaluation, Preclinical , Drug Therapy, Combination , Humans , Liver Diseases/drug therapy , Mice , Oleanolic Acid , Polycystic Kidney Diseases/metabolism , Primary Cell Culture , Pyrimidines/pharmacology , Rats , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Somatostatin/analogs & derivatives , Somatostatin/pharmacology , Somatostatin/therapeutic use
3.
Am J Pathol ; 184(3): 600-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24434010

ABSTRACT

Polycystic liver disease (PLD) is a member of the cholangiopathies, a group of liver diseases in which cholangiocytes, the epithelia lining of the biliary tree, are the target cells. PLDs are caused by mutations in genes involved in intracellular signaling pathways, cell cycle regulation, and ciliogenesis, among others. We previously showed that cystic cholangiocytes have abnormal cell cycle profiles and malfunctioning cilia. Because histone deacetylase 6 (HDAC6) plays an important role in both cell cycle regulation and ciliary disassembly, we examined the role of HDAC6 in hepatic cystogenesis. HDAC6 protein was increased sixfold in cystic liver tissue and in cultured cholangiocytes isolated from both PCK rats (an animal model of PLD) and humans with PLD. Furthermore, pharmacological inhibition of HDAC6 by Tubastatin-A, Tubacin, and ACY-1215 decreased proliferation of cystic cholangiocytes in a dose- and time-dependent manner, and inhibited cyst growth in three-dimensional cultures. Importantly, ACY-1215 administered to PCK rats diminished liver cyst development and fibrosis. In summary, we show that HDAC6 is overexpressed in cystic cholangiocytes both in vitro and in vivo, and its pharmacological inhibition reduces cholangiocyte proliferation and cyst growth. These data suggest that HDAC6 may represent a potential novel therapeutic target for cases of PLD.


Subject(s)
Cysts/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Liver Diseases/metabolism , Anilides/pharmacology , Anilides/therapeutic use , Animals , Bile Ducts, Intrahepatic/cytology , Cell Proliferation , Cells, Cultured , Cilia/metabolism , Cysts/drug therapy , Cysts/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/drug effects , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Liver/metabolism , Liver/pathology , Liver Diseases/drug therapy , Liver Diseases/pathology , Male , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Rats , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...