Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.357
Filter
1.
Res Sq ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38883780

ABSTRACT

Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. A novel drug formulation is made whereby a lipid nanoparticle (LNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5). This facilitates myeloid drug depot deposition. Particle delivery to viral reservoirs is tracked by positron emission tomography. The CCR5-mediated RPV LNP cell uptake and retention reduce HIV-1 replication in human monocyte-derived macrophages and infected humanized mice. Focused ultrasound allows the decorated LNP to penetrate the blood-brain barrier and reach brain myeloid cells. These findings offer a role for CCR5-targeted therapeutics in antiretroviral delivery to optimize HIV suppression.

2.
Molecules ; 29(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611739

ABSTRACT

In this paper, we study the drift behavior of organic electrochemical transistor (OECT) biosensors in a phosphate-buffered saline (PBS) buffer solution and human serum. Theoretical and experimental methods are illustrated in this paper to understand the origin of the drift phenomenon and the mechanism of ion diffusion in the sensing layer. The drift phenomenon is explained using a first-order kinetic model of ion adsorption into the gate material and shows very good agreement with experimental data on drift in OECTs. We show that the temporal current drift can be largely mitigated using a dual-gate OECT architecture and that dual-gate-based biosensors can increase the accuracy and sensitivity of immuno-biosensors compared to a standard single-gate design. Specific binding can be detected at a relatively low limit of detection, even in human serum.


Subject(s)
Research Design , Humans , Adsorption , Diffusion , Kinetics
3.
Phys Chem Chem Phys ; 26(15): 11604-11610, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38545925

ABSTRACT

Picosecond pulse radiolysis measurements were employed to assess the effectiveness of N3- in scavenging quasi-free electrons in aqueous solutions. The absorption spectra of hydrated electrons were recorded within a 100 ps timeframe across four distinct solutions with N3- concentrations of 0.5, 1, 2, and 5 M in water. The results revealed a concentration-dependent shift in the maximum absorption spectra of fully solvated electrons. Notably, at 5 M concentration, the maximum absorption occurred at 670 nm, in contrast to 715 nm observed for water. Intriguingly, the formation yield of hydrated electrons within the initial 5 ps electron pulse remained unaffected, showing that, even at a concentration of 5 M, N3- does not effectively scavenge quasi-free electrons. This is in disagreement with conclusions from stochastic models found in the literature. This observation has an important impact on understanding the mechanism of H2 formation in water radiolysis, which we discuss briefly here.

4.
ACS Appl Mater Interfaces ; 16(10): 12873-12885, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437591

ABSTRACT

Organic field-effect transistors (OFETs) were fabricated using three high-surface area and flexible expanded-poly(tetrafluoroethylene) (ePTFE) membranes in gate dielectrics, along with the semiconducting polymer poly[2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl)-alt-(2,2':5',2″:5″,2‴-quaterthiophen-5,5‴-diyl)] (PDPP4T). The transistor behavior of these devices was investigated following annealing at 50, 100, 150, and 200 °C, all sustained for 1 h. For annealing temperatures above 50 °C, the OFETs displayed improved transistor behavior and a significant increase in output current while maintaining similar magnitudes of Vth shifts when subjected to static voltage compared to those kept at ambient temperature. We also tested the response to NO2 gas for further characterization and for possible applications. The ePTFE-PDPP4T interface of each membrane was characterized via scanning electron microscopy for all four annealing temperatures to derive a model for the hole mobility of the ePTFE-PDPP4T OFETs that accounts for the microporous structure of the ePTFE and consequently adjusts the channel width of the OFET. Using this model, a maximum hole mobility of 1.8 ± 1.0 cm2/V s was calculated for the polymer in an ePTFE-PDPP4T OFET annealed at 200 °C, whereas a PDPP4T OFET using only the native silicon wafer oxide as a gate dielectric exhibited a hole mobility of just 0.09 ± 0.03 cm2/V s at the same annealing condition. This work demonstrates that responsive semiconducting polymer films can be deposited on nominally nonwetting and extremely bendable membranes, and the charge carrier mobility can be significantly increased compared to their as-prepared state by using thermally durable polymer membranes with unique microstructures as gate dielectrics.

5.
Pharmaceutics ; 16(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38399244

ABSTRACT

The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.

6.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38399364

ABSTRACT

Disordered immunity, aging, human immunodeficiency virus type one (HIV-1) infection, and responses to antiretroviral therapy are linked. However, how each factor is linked with the other(s) remains incompletely understood. It has been reported that accelerated aging, advanced HIV-1 infection, inflammation, and host genetic factors are associated with host cellular, mitochondrial, and metabolic alterations. However, the underlying mechanism remains elusive. With these questions in mind, we used chronically HIV-1-infected CD34-NSG humanized mice (hu-mice) to model older people living with HIV and uncover associations between HIV-1 infection and aging. Adult humanized mice were infected with HIV-1 at the age of 20 weeks and maintained for another 40 weeks before sacrifice. Animal brains were collected and subjected to transcriptomics, qPCR, and immunofluorescence assays to uncover immune disease-based biomarkers. CD4+ T cell decline was associated with viral level and age. Upregulated C1QA, CD163, and CXCL16 and downregulated LMNA and CLU were identified as age-associated genes tied to HIV-1 infection. Ingenuity pathway analysis affirmed links to innate immune activation, pyroptosis signaling, neuroinflammation, mitochondrial dysfunction, cellular senescence, and neuronal dysfunction. In summary, CD34-NSG humanized mice are identified as a valuable model for studying HIV-1-associated aging. Biomarkers of immune senescence and neuronal signaling are both age- and virus-associated. By exploring the underlying biological mechanisms that are linked to these biomarkers, interventions for next generation HIV-1-infected patients can be realized.

7.
Am J Forensic Med Pathol ; 45(2): 103-110, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38411190

ABSTRACT

ABSTRACT: Multiple studies have documented various factors that influence or determine forensic pathologist classification of manner of death. There do not appear to be any published studies on manner of death classification specifically regarding arrest-related deaths (ARDs). The goal of this study was to consider a large body of cases of nonfirearm ARDs to analyze the homicide classification with regards to numerous decedent and practitioner (medical examiner/coroner [ME/C]) variables. We analyzed 1145 US autopsy reports from the years 2006-2020, inclusive, and considered decedent variables of age, ethnicity, height, weight, body mass index, toxicology, and mention of a conducted electrical weapon and ME/C influence variables of gender, country region, and year. We found that the homicide classification likelihood increased by a factor of 1.04-1.05 per year, 1.34-1.37 for a female medical examiner, and 1.4-1.5 going from Southern states to Western states. There is an increasing trend for ME/C to label nonfirearm ARDs as homicides in the United States. The homicide classification is more common in Western states and less common in Southern states, and it was more common with a female ME/C.


Subject(s)
Homicide , Humans , Homicide/statistics & numerical data , Female , Male , Adult , Middle Aged , Aged , Young Adult , Adolescent , United States , Child , Child, Preschool , Coroners and Medical Examiners , Infant , Aged, 80 and over , Sex Distribution , Conducted Energy Weapon Injuries , Age Distribution , Cause of Death , Infant, Newborn , Body Weight
8.
J Leukoc Biol ; 115(3): 525-535, 2024 02 23.
Article in English | MEDLINE | ID: mdl-37982587

ABSTRACT

Because granulomas are a hallmark of tuberculosis pathogenesis, the study of the dynamic changes in their cellular composition and morphological character can facilitate our understanding of tuberculosis pathogenicity. Adult zebrafish infected with Mycobacterium marinum form granulomas that are similar to the granulomas in human patients with tuberculosis and therefore have been used to study host-mycobacterium interactions. Most studies of zebrafish granulomas, however, have focused on necrotic granulomas, while a systematic description of the different stages of granuloma formation in the zebrafish model is lacking. Here, we characterized the stages of granulomas in M. marinum-infected zebrafish, including early immune cell infiltration, nonnecrotizing granulomas, and necrotizing granulomas, using corresponding samples from patients with pulmonary tuberculosis as references. We combined hematoxylin and eosin staining and in situ hybridization to identify the different immune cell types and follow their spatial distribution in the different stages of granuloma development. The macrophages in zebrafish granulomas were shown to belong to distinct subtypes: epithelioid macrophages, foamy macrophages, and multinucleated giant cells. By defining the developmental stages of zebrafish granulomas and the spatial distribution of the different immune cells they contain, this work provides a reference for future studies of mycobacterial granulomas and their immune microenvironments.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Mycobacterium , Tuberculosis , Animals , Humans , Zebrafish/microbiology , Granuloma/microbiology , Granuloma/pathology
9.
Small ; : e2310527, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38050933

ABSTRACT

This paper reports a new mechanism for particulate matter detection and identification. Three types of carbon particles are synthesized with different functional groups to mimic the real particulates in atmospheric aerosol. After exposing polymer-based organic devices in organic field effect transistor (OFET) architectures to the particle mist, the sensitivity and selectivity of the detection of different types of particles are shown by the current changes extracted from the transfer curves. The results indicate that the sensitivity of the devices is related to the structure and functional groups of the organic semiconducting layers, as well as the morphology. The predominant response is simulated by a model that yielded values of charge carrier density increase and charge carriers delivered per unit mass of particles. The research points out that polymer semiconductor devices have the ability to selectively detect particles with multiple functional groups, which reveals a future direction for selective detection of particulate matter.

10.
Mol Neurodegener ; 18(1): 97, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111016

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aß) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aß (TCRAß). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAß (TCRAß -Tregs) to reduce Aß burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS: TCRAß -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aß reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aß-tetramer staining. Adoptive transfer of TCRAß-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS: TCRAß-Tregs expressed an Aß-specific TCR. Adoptive transfer of TCRAß-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAß-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS: TCRAß-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.


Subject(s)
Alzheimer Disease , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins , Disease Models, Animal , Mice, Transgenic , Presenilin-1/genetics , Receptors, Antigen, T-Cell , T-Lymphocytes, Regulatory
11.
Front Pharmacol ; 14: 1294579, 2023.
Article in English | MEDLINE | ID: mdl-38149054

ABSTRACT

The World Health Organization has recommended dolutegravir (DTG) as a preferred first-line treatment for treatment naive and experienced people living with human immunodeficiency virus type one (PLWHIV). Based on these recommendations 15 million PLWHIV worldwide are expected to be treated with DTG regimens on or before 2025. This includes pregnant women. Current widespread use of DTG is linked to the drug's high potency, barrier to resistance, and cost-effectiveness. Despite such benefits, potential risks of DTG-linked fetal neurodevelopmental toxicity remain a concern. To this end, novel formulation strategies are urgently needed in order to maximize DTG's therapeutic potentials while limiting adverse events. In regard to potential maternal fetal toxicities, we hypothesized that injectable long-acting nanoformulated DTG (NDTG) could provide improved safety by reducing drug fetal exposures compared to orally administered native drug. To test this notion, we treated pregnant C3H/HeJ mice with daily oral native DTG at a human equivalent dosage (5 mg/kg; n = 6) or vehicle (control; n = 8). These were compared against pregnant mice injected with intramuscular (IM) NDTG formulations given at 45 (n = 3) or 25 (n = 4) mg/kg at one or two doses, respectively. Treatment began at gestation day (GD) 0.5. Magnetic resonance imaging scanning of live dams at GD 17.5 was performed to obtain T1 maps of the embryo brain to assess T1 relaxation times of drug-induced oxidative stress. Significantly lower T1 values were noted in daily oral native DTG-treated mice, whereas comparative T1 values were noted between control and NDTG-treated mice. This data reflected prevention of DTG-induced oxidative stress when delivered as NDTG. Proteomic profiling of embryo brain tissues harvested at GD 17.5 demonstrated reductions in oxidative stress, mitochondrial impairments, and amelioration of impaired neurogenesis and synaptogenesis in NDTG-treated mice. Pharmacokinetic (PK) tests determined that both daily oral native DTG and parenteral NDTG achieved clinically equivalent therapeutic plasma DTG levels in dams (4,000-6,500 ng/mL). Importantly, NDTG led to five-fold lower DTG concentrations in embryo brain tissues compared to daily oral administration. Altogether, our preliminary work suggests that long-acting drug delivery can limit DTG-linked neurodevelopmental deficits.

12.
Cell Biosci ; 13(1): 209, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964309

ABSTRACT

Synucleinopathies are a group of neurodegenerative disorders characterized by pathologic aggregates of neural and glial α-synuclein (α-syn) in the form of Lewy bodies (LBs), Lewy neurites, and cytoplasmic inclusions in both neurons and glia. Two major classes of synucleinopathies are LB disease and multiple system atrophy. LB diseases include Parkinson's disease (PD), PD with dementia, and dementia with LBs. All are increasing in prevalence. Effective diagnostics, disease-modifying therapies, and therapeutic monitoring are urgently needed. Diagnostics capable of differentiating LB diseases are based on signs and symptoms which might overlap. To date, no specific diagnostic test exists despite disease-specific pathologies. Diagnostics are aided by brain imaging and cerebrospinal fluid evaluations, but more accessible biomarkers remain in need. Mechanisms of α-syn evolution to pathologic oligomers and insoluble fibrils can provide one of a spectrum of biomarkers to link complex neural pathways to effective therapies. With these in mind, we review promising biomarkers linked to effective disease-modifying interventions.

13.
NeuroImmune Pharm Ther ; 2(3): 317-330, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38023614

ABSTRACT

Objectives: To evaluate the linkage between age and deficits in innate and adaptive immunity which heralds both Alzheimer's disease (AD) onset and progression. The pathobiological events which underlie and tie these outcomes remain not fully understood. Methods: To investigate age-dependent immunity in AD, we evaluated innate and adaptive immunity in coordinate studies of regulatory T cell (Treg) function, T cell frequencies, and microglial integrity. These were assessed in blood, peripheral lymphoid tissues, and the hippocampus of transgenic (Tg) amyloid precursor protein/presenilin 1 (APP/PS1) against non-Tg mice. Additionally, immune arrays of hippocampal tissue were performed at 4, 6, 12, and 20 months of age. Results: APP/PS1 mice showed progressive impairment of Treg immunosuppressive function with age. There was partial restoration of Treg function in 20-month-old mice. Ingenuity pathway analyses of hippocampal tissues were enriched in inflammatory, oxidative, and cellular activation pathways that paralleled advancing age and AD-pathobiology. Operative genes in those pathways included, but were not limited to triggering receptor on myeloid cells 1 (TREM1), T helper type 1 (Th1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Interleukin-17 (IL-17), nitric oxide, acute phase, and T cell receptor signaling pathways were also perturbed. Significant inflammation was observed at 6- and 12-months. However, at 20-months, age associated partial restoration of Treg function reduced inflammatory phenotype. Conclusions: Impaired Treg function, inflammation and oxidative stress were associated with AD pathology. Age associated partial restoration of Treg function in old mice reduced the hippocampal inflammatory phenotype. Restoring Treg suppressive function can be a therapeutic modality for AD.

14.
Nanomedicine ; 54: 102711, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813236

ABSTRACT

For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Gene Transfer Techniques , Genetic Therapy
15.
J Cogn Neurosci ; 35(11): 1693-1715, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37677060

ABSTRACT

There has been a long-lasting debate about whether salient stimuli, such as uniquely colored objects, have the ability to automatically distract us. To resolve this debate, it has been suggested that salient stimuli do attract attention but that they can be suppressed to prevent distraction. Some research supporting this viewpoint has focused on a newly discovered ERP component called the distractor positivity (PD), which is thought to measure an inhibitory attentional process. This collaborative review summarizes previous research relying on this component with a specific emphasis on how the PD has been used to understand the ability to ignore distracting stimuli. In particular, we outline how the PD component has been used to gain theoretical insights about how search strategy and learning can influence distraction. We also review alternative accounts of the cognitive processes indexed by the PD component. Ultimately, we conclude that the PD component is a useful tool for understanding inhibitory processes related to distraction and may prove to be useful in other areas of study related to cognitive control.


Subject(s)
Attention , Learning , Humans , Attention/physiology , Inhibition, Psychological , Photic Stimulation , Electroencephalography , Reaction Time/physiology
16.
J Cogn ; 6(1): 39, 2023.
Article in English | MEDLINE | ID: mdl-37426056

ABSTRACT

There has been a lengthy debate about whether salient stimuli have the power to automatically capture attention, even when entirely task irrelevant. Theeuwes (2022) has suggested that an attentional window account could explain why capture is observed in some studies, but not others. According to this account, when search is difficult, participants narrow their attentional window, and this prevents the salient distractor from generating a saliency signal. In turn, this causes the salient distractor to fail to capture attention. In the present commentary, we describe two major problems with this account. First, the attentional window account proposes that attention must be focused so narrowly that featural information from the salient distractor will be filtered prior to saliency computations. However, many previous studies observing no capture provided evidence that featural processing was sufficiently detailed to guide attention toward the target shape. This indicates that the attentional window was sufficiently broad to allow featural processing. Second, the attentional window account proposes that capture should occur more readily in easy search tasks than difficult search tasks. We review previous studies that violate this basic prediction of the attentional window account. A more parsimonious account of the data is that control over feature processing can be exerted proactively to prevent capture, at least under certain conditions.

17.
Pathogens ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37513726

ABSTRACT

A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.

18.
Adv Drug Deliv Rev ; 200: 115009, 2023 09.
Article in English | MEDLINE | ID: mdl-37451501

ABSTRACT

Adherence to daily oral antiretroviral therapy (ART) is a barrier to both treatment and prevention of human immunodeficiency virus (HIV) infection. To overcome limitations of life-long daily regimen adherence, long-acting (LA) injectable antiretroviral (ARV) drugs, nanoformulations, implants, vaginal rings, microarray patches, and ultra-long-acting (ULA) prodrugs are now available or in development. These medicines enable persons who are or at risk for HIV infection to be treated with simplified ART regimens. First-generation LA cabotegravir, rilpivirine, and lenacapavir injectables and a dapivirine vaginal ring are now in use. However, each remains limited by existing dosing intervals, ease of administration, or difficulties in finding drug partners. ULA ART regimens provide an answer, but to date, such next-generation formulations remain in development. Establishing the niche will require affirmation of extended dosing, improved access, reduced injection volumes, improved pharmacokinetic profiles, selections of combination treatments, and synchronization of healthcare support. Based on such needs, this review highlights recent pharmacological advances and a future treatment perspective. While first-generation LA ARTs are available for HIV care, they remain far from ideal in meeting patient needs. ULA medicines, now in advanced preclinical development, may close gaps toward broader usage and treatment options.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Female , Humans , HIV Infections/drug therapy , HIV Infections/prevention & control , Rilpivirine/pharmacology , Rilpivirine/therapeutic use , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Injections
19.
Infect Immun ; 91(7): e0015523, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37338365

ABSTRACT

Macrophage (MΦ) infection models are important tools for studying host-mycobacterial interactions. Although the multiplicity of infection (MOI) is an important experimental variable, the selection of MOI in mycobacterial infection experiments is largely empirical, without reference to solid experimental data. To provide relevant data, we used RNA-seq to analyze the gene expression profiles of MΦs 4 or 24 h after infection with Mycobacterium marinum (M. m) at MOIs ranging from 0.1 to 50. Analysis of differentially expressed genes (DEGs) showed that different MOIs are linked to distinct transcriptomic changes and only 10% of DEGs were shared by MΦ infected at all MOIs. KEGG pathway enrichment analysis revealed that type I interferon (IFN)-related pathways were inoculant dose-dependent and enriched only at high MOIs, whereas TNF pathways were inoculant dose-independent and enriched at all MOIs. Protein-protein interaction (PPI) network alignment showed that different MOIs had distinct key node genes. By fluorescence-activated cell sorting and follow-up RT-PCR analysis, we could separate infected MΦs from uninfected MΦs and found phagocytosis of mycobacteria to be the determinant factor for type I IFN production. The distinct transcriptional regulation of RAW264.7 MΦ genes at different MOIs was also seen with Mycobacterium tuberculosis (M.tb) infections and primary MΦ infection models. In summary, transcriptional profiling of mycobacterial infected MΦs revealed that different MOIs activate distinct immune pathways and the type I IFN pathway is activated only at high MOIs. This study should provide guidance for selecting the MOI most appropriate for different research questions.


Subject(s)
Interferon Type I , Mycobacterium tuberculosis , Transcriptome , Signal Transduction , Macrophages , Mycobacterium tuberculosis/genetics , Interferon Type I/genetics
20.
Microbiol Spectr ; 11(4): e0333922, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37272796

ABSTRACT

Strains of the Mycobacterium tuberculosis complex (MTBC) Beijing family aroused concern because they were often found in clusters and appeared to be exceptionally transmissible. However, it was later found that strains of the Beijing family were heterogeneous, and the transmission advantage was restricted to sublineage L2.3 or modern Beijing. In this study, we analyzed the previously published genome sequences of 7,896 L2.3 strains from 51 different countries. Using BEAST software to approximate the temporal emergence of L2.3, our calculations suggest that L2.3 initially emerged in northern East Asia during the early 15th century and subsequently diverged into six phylogenetic clades, identified as L2.3.1 through L2.3.6. Using terminal branch length and genomic clustering as proxies for transmissibility, we found that the six clades displayed distinct population dynamics, with the three recently emerged clades (L2.3.4 to L2.3.6) exhibiting significantly higher transmissibility than the older three clades (L2.3.1 to L2.3.3). Of the Beijing family strains isolated outside East Asia, 83.1% belonged to the clades L2.3.4 to L2.3.6, which were also associated with more cross-border transmission. This work reveals the heterogeneity in sublineage L2.3 and demonstrates that the global success of Beijing family strains is driven by the three recently emerged L2.3 clades. IMPORTANCE The recent population dynamics of the global tuberculosis epidemic are heavily shaped by Mycobacterium tuberculosis complex (MTBC) strains with enhanced transmissibility. The infamous Beijing family strain stands out because it has rapidly spread throughout the world. Identifying the strains responsible for the global expansion and tracing their evolution should help to understand the nature of high transmissibility and develop effective strategies to control transmission. In this study, we found that the L2.3 sublineage diversified into six phylogenetic clades (L2.3.1 to L2.3.6) with various transmission characteristics. Clades L2.3.4 to L2.3.6 exhibited significantly higher transmissibility than clades L2.3.1 to L2.3.3, which helps explain why more than 80% of Beijing family strains collected outside East Asia belong to these three clades. We conclude that the global success of L2.3 was not caused by the entire L2.3 sublineage but rather was due to the rapid expansion of L2.3.4 to L2.3.6. Tracking the transmission of L2.3.4 to L2.3.6 strains can help to formulate targeted TB prevention and control.


Subject(s)
Mycobacterium tuberculosis , Beijing/epidemiology , Phylogeny , Genotype , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...