Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 20(1): 26-36, 2021 01.
Article in English | MEDLINE | ID: mdl-33037136

ABSTRACT

The PI3K/AKT/mTOR pathway is often activated in lymphoma through alterations in PI3K, PTEN, and B-cell receptor signaling, leading to dysregulation of eIF4A (through its regulators, eIF4B, eIF4G, and PDCD4) and the eIF4F complex. Activation of eIF4F has a direct role in tumorigenesis due to increased synthesis of oncogenes that are dependent on enhanced eIF4A RNA helicase activity for translation. eFT226, which inhibits translation of specific mRNAs by promoting eIF4A1 binding to 5'-untranslated regions (UTR) containing polypurine and/or G-quadruplex recognition motifs, shows potent antiproliferative activity and significant in vivo efficacy against a panel of diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma models with ≤1 mg/kg/week intravenous administration. Evaluation of predictive markers of sensitivity or resistance has shown that activation of eIF4A, mediated by mTOR signaling, correlated with eFT226 sensitivity in in vivo xenograft models. Mutation of PTEN is associated with reduced apoptosis in vitro and diminished efficacy in vivo in response to eFT226. In models evaluated with PTEN loss, AKT was stimulated without a corresponding increase in mTOR activation. AKT activation leads to the degradation of PDCD4, which can alter eIF4F complex formation. The association of eFT226 activity with PTEN/PI3K/mTOR pathway regulation of mRNA translation provides a means to identify patient subsets during clinical development.


Subject(s)
Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Oncogenes , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Eukaryotic Initiation Factor-4A/metabolism , Female , Humans , Mice, Inbred NOD , Mice, SCID , PTEN Phosphohydrolase/metabolism , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
2.
J Med Chem ; 63(11): 5879-5955, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32470302

ABSTRACT

Dysregulation of protein translation is a key driver for the pathogenesis of many cancers. Eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase, is a critical component of the eIF4F complex, which regulates cap-dependent protein synthesis. The flavagline class of natural products (i.e., rocaglamide A) has been shown to inhibit protein synthesis by stabilizing a translation-incompetent complex for select messenger RNAs (mRNAs) with eIF4A. Despite showing promising anticancer phenotypes, the development of flavagline derivatives as therapeutic agents has been hampered because of poor drug-like properties as well as synthetic complexity. A focused effort was undertaken utilizing a ligand-based design strategy to identify a chemotype with optimized physicochemical properties. Also, detailed mechanistic studies were undertaken to further elucidate mRNA sequence selectivity, key regulated target genes, and the associated antitumor phenotype. This work led to the design of eFT226 (Zotatifin), a compound with excellent physicochemical properties and significant antitumor activity that supports clinical development.


Subject(s)
Benzofurans/chemistry , Drug Design , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Animals , Benzofurans/pharmacokinetics , Benzofurans/therapeutic use , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Crystallography, X-Ray , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Female , Half-Life , Humans , Ligands , Mice , Mice, Nude , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Structure, Tertiary , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Rats , Structure-Activity Relationship
3.
Oncotarget ; 7(29): 45959-45975, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27323855

ABSTRACT

The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2'-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity.


Subject(s)
Carcinoma, Pancreatic Ductal/enzymology , Gene Expression Regulation, Neoplastic/physiology , Pancreatic Neoplasms/enzymology , Receptor Protein-Tyrosine Kinases/biosynthesis , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DNA Methylation/genetics , Heterografts , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Receptor Protein-Tyrosine Kinases/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...