Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(2): 320, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36689091

ABSTRACT

Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss.


Subject(s)
Military Personnel , Remote Sensing Technology , Humans , Remote Sensing Technology/methods , Environmental Monitoring/methods , Satellite Imagery , Algorithms
2.
Environ Manage ; 54(1): 51-66, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24817335

ABSTRACT

The effects of military training activities on the land condition of Army installations vary spatially and temporally. Training activities observably degrade land condition while also increasing biodiversity and stabilizing ecosystems. Moreover, other anthropogenic activities regularly occur on military lands such as prescribed burns and agricultural haying-adding to the dynamics of land condition. Thus, spatially and temporally assessing the impacts of military training, prescribed burning, agricultural haying, and their interactions is critical to the management of military lands. In this study, the spatial distributions and patterns of military training-induced disturbance frequency were derived using plot observation and point observation-based method, at Fort Riley, Kansas from 1989 to 2001. Moreover, spatial and variance analysis of cumulative impacts due to military training, burning, haying, and their interactions on the land condition of Fort Riley were conducted. The results showed that: (1) low disturbance intensity dominated the majority of the study area with exception of concentrated training within centralized areas; (2) high and low values of disturbance frequency were spatially clustered and had spatial patterns that differed significantly from a random distribution; and (3) interactions between prescribed burning and agricultural haying were not significant in terms of either soil erosion or disturbance intensity although their means and variances differed significantly between the burned and non-burned areas and between the hayed and non-hayed areas.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/statistics & numerical data , Military Facilities , Military Personnel/education , Agriculture , Environmental Monitoring/methods , Fires , Humans , Kansas , Remote Sensing Technology/methods , Spatio-Temporal Analysis
3.
J Environ Manage ; 92(3): 803-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21036461

ABSTRACT

Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans.


Subject(s)
Soil , Illinois
4.
J Environ Manage ; 91(3): 772-80, 2010.
Article in English | MEDLINE | ID: mdl-19939549

ABSTRACT

Vehicle use during military training activities results in soil disturbance and vegetation loss. The capacity of lands to sustain training is a function of the sensitivity of lands to vehicle use and the pattern of land use. The sensitivity of land to vehicle use has been extensively studied. Less well understood are the spatial patterns of vehicle disturbance. Since disturbance from off-road vehicular traffic moving through complex landscapes varies spatially, a spatially explicit nonlinear regression model (disturbance model) was used to predict the pattern of vehicle disturbance across a training facility. An uncertainty analysis of the model predictions assessed the spatial distribution of prediction uncertainty and the contribution of different error sources to that uncertainty. For the most part, this analysis showed that mapping and modeling process errors contributed more than 95% of the total uncertainty of predicted disturbance, while satellite imagery error contributed less than 5% of the uncertainty. When the total uncertainty was larger than a threshold, modeling error contributed 60% to 90% of the prediction uncertainty. Otherwise, mapping error contributed about 10% to 50% of the total uncertainty. These uncertainty sources were further partitioned spatially based on other sources of uncertainties associated with vehicle moment, landscape characterization, satellite imagery, etc.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Off-Road Motor Vehicles , Plants , Soil , Forecasting/methods , Geography , Military Personnel , Models, Statistical , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...