Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Transl Anim Sci ; 7(1): txad100, 2023.
Article in English | MEDLINE | ID: mdl-37662897

ABSTRACT

The objective was to evaluate the impact of functional teat number on reproductive throughput in swine. Data included 735 multiparous Landrace × Large White F1 females. Sow underlined traits consisted of total teat number (TT), functional teat number (FT), nonfunctional teat number (NFT), and number of functional mammary glands (FMG). Weaning traits were calculated for both the biological and the nurse dam. For the biological dam, litter size at weaning (LSW) included a sow's biological piglets regardless of cross-fostering. For nurse dam, number weaned (NW) included the piglets a sow weaned. For the biological dam, piglet survival (PS) was calculated as litter size at weaning / (total number born × 100). Linear regression estimates were calculated in RStudio v. 1.1.456 and variance components were estimated using GIBBS3F90. Average total number born, number born alive, TT, FT, NFT, and FMG were 14.22, 13.12, 14.43, 13.96, 0.42, and 10.7, respectively. An increase in one FT enhanced (P < 0.05) LSW by 0.32 piglets and NW by 0.33 piglets. Similarly, an increase in one FT improved (P < 0.05) PS by 1.63% and reduced (P < 0.05) preweaning mortality by 2.73%. However, an increase in one FT reduced (P < 0.05) average piglet weaning weight (WW) for biological and nurse dams by 35 and 94 g, respectively. Yet an increase in one FT enhanced (P < 0.05) litter weaning weight (LWW) for biological and nurse dams by 1.3 and 1.5 kg, respectively. Heritability estimates for TT, FT, NFT, FMG, WW, LWW, LSW, and PS were 0.25, 0.22, 0.53, 0.18, 0.21, 0.22, 0.16, and 0.18, respectively. Genetic correlation estimates between FT with TT, NFT, and FMG were 0.79, 0.09, and 0.28, respectively. Estimated genetic correlations between TT with WW, LWW, LSW, and PS were 0.37, 0.38, 0.11, and -0.19, respectively. Genetic correlation estimates between FT with WW, LWW, LSW, and PS were 0.44, 0.49, 0.39, and 0.35, respectively. Results suggest increasing functional teat number would enhance both piglet survival and reproductive throughput.

2.
J Anim Sci ; 100(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35775583

ABSTRACT

The microbial composition resemblance among individuals in a group can be summarized in a square covariance matrix and fitted in linear models. We investigated eight approaches to create the matrix that quantified the resemblance between animals based on the gut microbiota composition. We aimed to compare the performance of different methods in estimating trait microbiability and predicting growth and body composition traits in three pig breeds. This study included 651 purebred boars from either breed: Duroc (n = 205), Landrace (n = 226), and Large White (n = 220). Growth and body composition traits, including body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), and ultrasound intramuscular fat (IMF) content, were measured on live animals at the market weight (156 ± 2.5 d of age). Rectal swabs were taken from each animal at 158 ± 4 d of age and subjected to 16S rRNA gene sequencing. Eight methods were used to create the microbial similarity matrices, including 4 kernel functions (Linear Kernel, LK; Polynomial Kernel, PK; Gaussian Kernel, GK; Arc-cosine Kernel with one hidden layer, AK1), 2 dissimilarity methods (Bray-Curtis, BC; Jaccard, JA), and 2 ordination methods (Metric Multidimensional Scaling, MDS; Detrended Correspondence analysis, DCA). Based on the matrix used, microbiability estimates ranged from 0.07 to 0.21 and 0.12 to 0.53 for Duroc, 0.03 to 0.21 and 0.05 to 0.44 for Landrace, and 0.02 to 0.24 and 0.05 to 0.52 for Large White pigs averaged over traits in the model with sire, pen, and microbiome, and model with the only microbiome, respectively. The GK, JA, BC, and AK1 obtained greater microbiability estimates than the remaining methods across traits and breeds. Predictions were made within each breed group using four-fold cross-validation based on the relatedness of sires in each breed group. The prediction accuracy ranged from 0.03 to 0.18 for BW, 0.08 to 0.31 for BF, 0.21 to 0.48 for LD, and 0.04 to 0.16 for IMF when averaged across breeds. The BC, MDS, LK, and JA achieved better accuracy than other methods in most predictions. Overall, the PK and DCA exhibited the worst performance compared to other microbiability estimation and prediction methods. The current study shows how alternative approaches summarized the resemblance of gut microbiota composition among animals and contributed this information to variance component estimation and phenotypic prediction in swine.


Gut microbiota has received significant research attention in farm animals because of its close relationship with host performance. We chose eight approaches to create a square covariance matrix that characterizes the relationship among animals based on their gut microbiota composition. Then, we fitted this information with linear models to evaluate the proportion of phenotypic variance explained by gut microbiota composition and predict host growth and body composition traits in three pig breeds. We found that different matrices had varying performance in predicting host phenotypes, but the results highly depended on the trait and breed considered in the prediction. Our findings highlight possible alternative approaches to incorporate gut microbiome data in regression models and emphasize the value of gut microbiome data in better understanding complex traits in pigs with diverse genetic backgrounds.


Subject(s)
Gastrointestinal Microbiome , Animals , Body Composition/genetics , Male , Phenotype , RNA, Ribosomal, 16S/genetics , Swine
3.
Genes (Basel) ; 13(5)2022 04 26.
Article in English | MEDLINE | ID: mdl-35627152

ABSTRACT

The purpose of this study was to investigate the use of feeding behavior in conjunction with gut microbiome sampled at two growth stages in predicting growth and body composition traits of finishing pigs. Six hundred and fifty-one purebred boars of three breeds: Duroc (DR), Landrace (LR), and Large White (LW), were studied. Feeding activities were recorded individually from 99 to 163 days of age. The 16S rRNA gene sequences were obtained from each pig at 123 ± 4 and 158 ± 4 days of age. When pigs reached market weight, body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), and ultrasound intramuscular fat (IMF) content were measured on live animals. Three models including feeding behavior (Model_FB), gut microbiota (Model_M), or both (Model_FB_M) as predictors, were investigated. Prediction accuracies were evaluated through cross-validation across genetic backgrounds using the leave-one-breed-out strategy and across rearing environments using the leave-one-room-out approach. The proportions of phenotypic variance of growth and body composition traits explained by feeding behavior ranged from 0.02 to 0.30, and from 0.20 to 0.52 when using gut microbiota composition. Overall prediction accuracy (averaged over traits and time points) of phenotypes was 0.24 and 0.33 for Model_FB, 0.27 and 0.19 for Model_M, and 0.40 and 0.35 for Model_FB_M for the across-breed and across-room scenarios, respectively. This study shows how feeding behavior and gut microbiota composition provide non-redundant information in predicting growth in swine.


Subject(s)
Gastrointestinal Microbiome , Animals , Body Composition/genetics , Feeding Behavior , Gastrointestinal Microbiome/genetics , Male , Phenotype , RNA, Ribosomal, 16S/genetics , Swine
4.
BMC Microbiol ; 22(1): 1, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34979903

ABSTRACT

BACKGROUND: The interplay between the gut microbiota and feeding behavior has consequences for host metabolism and health. The present study aimed to explore gut microbiota overall influence on feeding behavior traits and to identify specific microbes associated with the traits in three commercial swine breeds at three growth stages. Feeding behavior measures were obtained from 651 pigs of three breeds (Duroc, Landrace, and Large White) from an average 73 to 163 days of age. Seven feeding behavior traits covered the information of feed intake, feeder occupation time, feeding rate, and the number of visits to the feeder. Rectal swabs were collected from each pig at 73 ± 3, 123 ± 4, and 158 ± 4 days of age. DNA was extracted and subjected to 16 S rRNA gene sequencing. RESULTS: Differences in feeding behavior traits among breeds during each period were found. The proportion of phenotypic variances of feeding behavior explained by the gut microbial composition was small to moderate (ranged from 0.09 to 0.31). A total of 21, 10, and 35 amplicon sequence variants were found to be significantly (q-value < 0.05) associated with feeding behavior traits for Duroc, Landrace, and Large White across the three sampling time points. The identified amplicon sequence variants were annotated to five phyla, with Firmicutes being the most abundant. Those amplicon sequence variants were assigned to 28 genera, mainly including Christensenellaceae_R-7_group, Ruminococcaceae_UCG-004, Dorea, Ruminococcaceae_UCG-014, and Marvinbryantia. CONCLUSIONS: This study demonstrated the importance of the gut microbial composition in interacting with the host feeding behavior and identified multiple archaea and bacteria associated with feeding behavior measures in pigs from either Duroc, Landrace, or Large White breeds at three growth stages. Our study provides insight into the interaction between gut microbiota and feeding behavior and highlights the genetic background and age effects in swine microbial studies.


Subject(s)
Feeding Behavior , Gastrointestinal Microbiome , Swine/genetics , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Gastrointestinal Microbiome/genetics , Phenotype , RNA, Ribosomal, 16S/genetics , Swine/growth & development , Swine/microbiology
5.
J Anim Sci ; 99(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34343280

ABSTRACT

It is of interest to evaluate crossbred pigs for hot carcass weight (HCW) and birth weight (BW); however, obtaining a HCW record is dependent on livability (LIV) and retained tag (RT). The purpose of this study is to analyze how HCW evaluations are affected when herd removal and missing identification are included in the model and examine if accounting for the reasons for missing traits improves the accuracy of predicting breeding values. Pedigree information was available for 1,965,077 purebred and crossbred animals. Records for 503,716 commercial three-way crossbred terminal animals from 2014 to 2019 were provided by Smithfield Premium Genetics. Two pedigree-based models were compared; model 1 (M1) was a threshold-linear model with all four traits (BW, HCW, RT, and LIV), and model 2 (M2) was a linear model including only BW and HCW. The fixed effects used in the model were contemporary group, sex, age at harvest (for HCW only), and dam parity. The random effects included direct additive genetic and random litter effects. Accuracy, dispersion, bias, and Pearson correlations were estimated using the linear regression method. The heritabilities were 0.11, 0.07, 0.02, and 0.04 for BW, HCW, RT, and LIV, respectively, with standard errors less than 0.01. No difference was observed in heritabilities or accuracies for BW and HCW between M1 and M2. Accuracies were 0.33, 0.37, 0.19, and 0.23 for BW, HCW, RT, and LIV, respectively. The genetic correlation between BW and RT was 0.34 ± 0.03, and between BW and LIV was 0.56 ± 0.03. Similarly, the genetic correlation between HCW and RT was 0.26 ± 0.04, and between HCW and LIV was 0.09 ± 0.05, respectively. The positive and moderate genetic correlations between BW and other traits imply a heavier BW resulted in a higher probability of surviving to harvest. Genetic correlations between HCW and other traits were lower due to the large quantity of missing records. Despite the heritable and correlated aspects of RT and LIV, results imply no major differences between M1 and M2; hence, it is unnecessary to include these traits in classical models for BW and HCW.


Subject(s)
Hybridization, Genetic , Models, Genetic , Animals , Birth Weight , Body Weight , Female , Parity , Pedigree , Phenotype , Pregnancy , Swine/genetics
6.
Genet Sel Evol ; 53(1): 51, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34139991

ABSTRACT

BACKGROUND: There is an increasing need to account for genotype-by-environment (G × E) interactions in livestock breeding programs to improve productivity and animal welfare across environmental and management conditions. This is even more relevant for pigs because selection occurs in high-health nucleus farms, while commercial pigs are raised in more challenging environments. In this study, we used single-step homoscedastic and heteroscedastic genomic reaction norm models (RNM) to evaluate G × E interactions in Large White pigs, including 8686 genotyped animals, for reproduction (total number of piglets born, TNB; total number of piglets born alive, NBA; total number of piglets weaned, NW), growth (weaning weight, WW; off-test weight, OW), and body composition (ultrasound muscle depth, MD; ultrasound backfat thickness, BF) traits. Genetic parameter estimation and single-step genome-wide association studies (ssGWAS) were performed for each trait. RESULTS: The average performance of contemporary groups (CG) was estimated and used as environmental gradient in the reaction norm analyses. We found that the need to consider heterogeneous residual variance in RNM models was trait dependent. Based on estimates of variance components of the RNM slope and of genetic correlations across environmental gradients, G × E interactions clearly existed for TNB and NBA, existed for WW but were of smaller magnitude, and were not detected for NW, OW, MD, and BF. Based on estimates of the genetic variance explained by the markers in sliding genomic windows in ssGWAS, several genomic regions were associated with the RNM slope for TNB, NBA, and WW, indicating specific biological mechanisms underlying environmental sensitivity, and dozens of novel candidate genes were identified. Our results also provided strong evidence that the X chromosome contributed to the intercept and slope of RNM for litter size traits in pigs. CONCLUSIONS: We provide a comprehensive description of G × E interactions in Large White pigs for economically-relevant traits and identified important genomic regions and candidate genes associated with GxE interactions on several autosomes and the X chromosome. Implementation of these findings will contribute to more accurate genomic estimates of breeding values by considering G × E interactions, in order to genetically improve the environmental robustness of maternal-line pigs.


Subject(s)
Gene-Environment Interaction , Maternal Inheritance , Swine/genetics , Weight Gain/genetics , Animals , Body Composition/genetics , Female , Male , Models, Genetic , Quantitative Trait, Heritable , Reproduction/genetics , Swine/physiology
7.
Nat Methods ; 18(4): 406-416, 2021 04.
Article in English | MEDLINE | ID: mdl-33686300

ABSTRACT

Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a 'crappifier' that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a 'multi-frame' PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org.


Subject(s)
Deep Learning , Algorithms , Microscopy, Electron/methods , Signal-To-Noise Ratio
8.
J Anim Sci ; 99(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33733277

ABSTRACT

Genomic information has a limited dimensionality (number of independent chromosome segments [Me]) related to the effective population size. Under the additive model, the persistence of genomic accuracies over generations should be high when the nongenomic information (pedigree and phenotypes) is equivalent to Me animals with high accuracy. The objective of this study was to evaluate the decay in accuracy over time and to compare the magnitude of decay with varying quantities of data and with traits of low and moderate heritability. The dataset included 161,897 phenotypic records for a growth trait (GT) and 27,669 phenotypic records for a fitness trait (FT) related to prolificacy in a population with dimensionality around 5,000. The pedigree included 404,979 animals from 2008 to 2020, of which 55,118 were genotyped. Two single-trait models were used with all ancestral data and sliding subsets of 3-, 2-, and 1-generation intervals. Single-step genomic best linear unbiased prediction (ssGBLUP) was used to compute genomic estimated breeding values (GEBV). Estimated accuracies were calculated by the linear regression (LR) method. The validation population consisted of single generations succeeding the training population and continued forward for all generations available. The average accuracy for the first generation after training with all ancestral data was 0.69 and 0.46 for GT and FT, respectively. The average decay in accuracy from the first generation after training to generation 9 was -0.13 and -0.19 for GT and FT, respectively. The persistence of accuracy improves with more data. Old data have a limited impact on the predictions for young animals for a trait with a large amount of information but a bigger impact for a trait with less information.


Subject(s)
Genome , Models, Genetic , Animals , Genomics , Genotype , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Social Responsibility , Swine/genetics
9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33431650

ABSTRACT

The science around the use of masks by the public to impede COVID-19 transmission is advancing rapidly. In this narrative review, we develop an analytical framework to examine mask usage, synthesizing the relevant literature to inform multiple areas: population impact, transmission characteristics, source control, wearer protection, sociological considerations, and implementation considerations. A primary route of transmission of COVID-19 is via respiratory particles, and it is known to be transmissible from presymptomatic, paucisymptomatic, and asymptomatic individuals. Reducing disease spread requires two things: limiting contacts of infected individuals via physical distancing and other measures and reducing the transmission probability per contact. The preponderance of evidence indicates that mask wearing reduces transmissibility per contact by reducing transmission of infected respiratory particles in both laboratory and clinical contexts. Public mask wearing is most effective at reducing spread of the virus when compliance is high. Given the current shortages of medical masks, we recommend the adoption of public cloth mask wearing, as an effective form of source control, in conjunction with existing hygiene, distancing, and contact tracing strategies. Because many respiratory particles become smaller due to evaporation, we recommend increasing focus on a previously overlooked aspect of mask usage: mask wearing by infectious people ("source control") with benefits at the population level, rather than only mask wearing by susceptible people, such as health care workers, with focus on individual outcomes. We recommend that public officials and governments strongly encourage the use of widespread face masks in public, including the use of appropriate regulation.


Subject(s)
COVID-19 , Contact Tracing , Masks , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans
10.
Sci Rep ; 10(1): 15101, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934296

ABSTRACT

In light of recent host-microbial association studies, a consensus is evolving that species composition of the gastrointestinal microbiota is a polygenic trait governed by interactions between host genetic factors and the environment. Here, we investigated the effect of host genetic factors in shaping the bacterial species composition in the rumen by performing a genome-wide association study. Using a common set of 61,974 single-nucleotide polymorphisms found in cattle genomes (n = 586) and corresponding rumen bacterial community composition, we identified operational taxonomic units (OTUs), Families and Phyla with high heritability. The top associations (1-Mb windows) were located on 7 chromosomes. These regions were associated with the rumen microbiota in multiple ways; some (chromosome 19; position 3.0-4.0 Mb) are associated with closely related taxa (Prevotellaceae, Paraprevotellaceae, and RF16), some (chromosome 27; position 3.0-4.0 Mb) are associated with distantly related taxa (Prevotellaceae, Fibrobacteraceae, RF16, RFP12, S24-7, Lentisphaerae, and Tenericutes) and others (chromosome 23; position 0.0-1.0) associated with both related and unrelated taxa. The annotated genes associated with identified genomic regions suggest the associations observed are directed toward selective absorption of volatile fatty acids from the rumen to increase energy availability to the host. This study demonstrates that host genetics affects rumen bacterial community composition.


Subject(s)
Bacteria/genetics , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Rumen/microbiology , Animal Feed/microbiology , Animals , Cattle , Fatty Acids, Volatile/genetics , Genome-Wide Association Study
11.
Front Genet ; 11: 629, 2020.
Article in English | MEDLINE | ID: mdl-32695139

ABSTRACT

Improving swine climatic resilience through genomic selection has the potential to minimize welfare issues and increase the industry profitability. The main objective of this study was to investigate the genetic and genomic determinism of tolerance to heat stress in four independent purebred populations of swine. Three female reproductive traits were investigated: total number of piglets born (TNB), number of piglets born alive (NBA) and average birth weight (ABW). More than 80,000 phenotypic and 12,000 genotyped individuals were included in this study. Genomic random-regression models were fitted regressing the phenotypes of interest on a set of 95 environmental covariates extracted from public weather station records. The models yielded estimates of (genomic) reactions norms for individual pigs, as indicator of heat tolerance. Heat tolerance is a heritable trait, although the heritabilities are larger under comfortable than heat-stress conditions (larger than 0.05 vs. 0.02 for TNB; 0.10 vs. 0.05 for NBA; larger than 0.20 vs. 0.10 for ABW). TNB showed the lowest genetic correlation (-38%) between divergent climatic conditions, being the trait with the strongest impact of genotype by environment interaction, while NBA and ABW showed values slightly negative or equal to zero reporting a milder impact of the genotype by environment interaction. After estimating genetic parameters, a genome-wide association study was performed based on the single-step GBLUP method. Heat tolerance was observed to be a highly polygenic trait. Multiple and non-overlapping genomic regions were identified for each trait based on the genomic breeding values for reproductive performance under comfortable or heat stress conditions. Relevant regions were found on chromosomes (SSC) 1, 3, 5, 6, 9, 11, and 12, although there were important regions across all autosomal chromosomes. The genomic region located on SSC9 appears to be of particular interest since it was identified for two traits (TNB and NBA) and in two independent populations. Heat tolerance based on reproductive performance indicators is a heritable trait and genetic progress for heat tolerance can be achieved through genetic or genomic selection. Various genomic regions and candidate genes with important biological functions were identified, which will be of great value for future functional genomic studies.

12.
Microbiome ; 8(1): 110, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32698902

ABSTRACT

BACKGROUND: Feed efficiency is a crucial parameter in swine production, given both its economic and environmental impact. The gut microbiota plays an essential role in nutrient digestibility and is, therefore, likely to affect feed efficiency. This study aimed to characterize feed efficiency, fatness traits, and gut microbiome composition in three major breeds of domesticated swine and investigate a possible link between feed efficiency and gut microbiota composition. RESULTS: Average daily feed intake (ADFI), average daily gain (ADG), feed conversion ratio (FCR), residual feed intake (RFI), backfat, loin depth, and intramuscular fat of 615 pigs belonging to the Duroc (DR), Landrace (LR), and Large White (LW) breeds were measured. Gut microbiota composition was characterized by 16S rRNA gene sequencing. Orthogonal contrasts between paternal line (DR) and maternal lines (LR+LW) and between the two maternal lines (LR versus LW) were performed. Average daily feed intake and ADG were statistically different with DR having lower ADFI and ADG compared to LR and LW. Landrace and LW had a similar ADG and RFI, with higher ADFI and FCR for LW. Alpha diversity was higher in the fecal microbial communities of LR pigs than in those of DR and LW pigs for all time points considered. Duroc communities had significantly higher proportional representation of the Catenibacterium and Clostridium genera compared to LR and LW, while LR pigs had significantly higher proportions of Bacteroides than LW for all time points considered. Amplicon sequence variants from multiple genera (including Anaerovibrio, Bacteroides, Blautia, Clostridium, Dorea, Eubacterium, Faecalibacterium, Lactobacillus, Oscillibacter, and Ruminococcus) were found to be significantly associated with feed efficiency, regardless of the time point considered. CONCLUSIONS: In this study, we characterized differences in the composition of the fecal microbiota of three commercially relevant breeds of swine, both over time and between breeds. Correlations between different microbiome compositions and feed efficiency were established. This suggests that the microbial community may contribute to shaping host productive parameters. Moreover, our study provides important insights into how the intestinal microbial community might influence host energy harvesting capacity. A deeper understanding of this process may allow us to modulate the gut microbiome in order to raise more efficient animals. Video Abstract.


Subject(s)
Animal Feed , Gastrointestinal Microbiome , Intestines/microbiology , Swine/classification , Swine/microbiology , Animals , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Male , RNA, Ribosomal, 16S/genetics , Weight Gain
13.
Adv Physiol Educ ; 44(3): 387-393, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32628526

ABSTRACT

The greatest physiological threat to terrestrial life is dehydration; however, examining the factors that influence water balance in a teaching setting can be problematic. The proposed exercise examines cutaneous water loss using gelatin frogs. The use of models provides a unique approach to learning about water loss without the need of Institutional Animal Care and Use Committee approval or specialized equipment to measure dehydration from relatively small invertebrates. The first described hands-on experiment examines gelatin frogs of different sizes to understand how surface area-to-volume ratio impacts water loss. The second experiment exposes gelatin models to various conditions, such as convective air currents (wind) or extreme temperature, to understand how abiotic factors influence the vapor pressure deficit between the animal and environment and thus water loss. These easily adaptable activities use everyday household items and can be scaled accordingly to classes of different sizes and academic levels. Thus these flexible exercises can be approached through facilitated, guided, or open inquiry, as students formulate hypotheses, design the experiments, create graphs, and interpret the data through answering questions or a write up.


Subject(s)
Body Temperature Regulation , Water , Animals , Humans , Water-Electrolyte Balance
14.
J Anim Sci ; 97(7): 2780-2792, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31115442

ABSTRACT

The largest gains in accuracy in a genomic selection program come from genotyping young selection candidates who have not yet produced progeny and who might, or might not, have a phenotypic record recorded. To reduce genotyping costs and to allow for an increased amount of genomic data to be available in a population, young selection candidates may be genotyped with low-density (LD) panels and imputed to a higher density. However, to ensure that a reasonable imputation accuracy persists overtime, some parent animals originally genotyped at LD must be re-genotyped at a higher density. This study investigated the long-term impact of selectively re-genotyping parents with a medium-density (MD) SNP panel on the accuracy of imputation and on the genetic predictions using ssGBLUP in a simulated beef cattle population. Assuming a moderately heritable trait (0.25) and a population undergoing selection, the simulation generated sequence data for a founder population (100 male and 500 female individuals) and 9,000 neutral markers, considered as the MD panel. All selection candidates from generation 8 to 15 were genotyped with LD panels corresponding to a density of 0.5% (LD_0.5), 2% (LD_2), and 5% (LD_5) of the MD. Re-genotyping scenarios chose parents at random or based on EBV and ranged from 10% of male parents to re-genotyping all male and female parents with MD. Ranges in average imputation accuracy at generation 15 were 0.567 to 0.936, 0.795 to 0.985, and 0.931 to 0.995 for the LD_0.5, LD_2, and LD_5, respectively, and the average EBV accuracies ranged from 0.453 to 0.735, 0.631 to 0.784, and 0.748 to 0.807 for LD_0.5, LD_2, and LD_5, respectively. Re-genotyping parents based on their EBV resulted in higher imputation and EBV accuracies compared to selecting parents at random and these values increased with the size of LD panels. Differences between re-genotyping scenarios decreased when the density of the LD panel increased, suggesting fewer animals needed to be re-genotyped to achieve higher accuracies. In general, imputation and EBV accuracies were greater when more parents were re-genotyped, independent of the proportion of males and females. In practice, the relationship between the density of the LD panel used and the target panel must be considered to determine the number (proportion) of animals that would need to be re-genotyped to enable sufficient imputation accuracy.


Subject(s)
Cattle/genetics , Gene Frequency , Genomics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Alleles , Animal Husbandry , Animals , Breeding , Data Accuracy , Female , Genotype , Genotyping Techniques/veterinary , Linkage Disequilibrium , Male , Pedigree , Phenotype , Pregnancy , Random Allocation
15.
J Anim Sci ; 97(4): 1534-1549, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30721970

ABSTRACT

For genomic predictors to be of use in genetic evaluation, their predicted accuracy must be a reliable indicator of their utility, and thus unbiased. The objective of this paper was to evaluate the accuracy of prediction of genomic breeding values (GBV) using different clustering strategies and response variables. Red Angus genotypes (n = 9,763) were imputed to a reference 50K panel. The influence of clustering method [k-means, k-medoids, principal component (PC) analysis on the numerator relationship matrix (A) and the identical-by-state genomic relationship matrix (G) as both data and covariance matrices, and random] and response variables [deregressed estimated breeding values (DEBV) and adjusted phenotypes] were evaluated for cross-validation. The GBV were estimated using a Bayes C model for all traits. Traits for DEBV included birth weight (BWT), marbling (MARB), rib-eye area (REA), and yearling weight (YWT). Adjusted phenotypes included BWT, YWT, and ultrasonically measured intramuscular fat percentage and REA. Prediction accuracies were estimated using the genetic correlation between GBV and associated response variable using a bivariate animal model. A simulation mimicking a cattle population, replicated 5 times, was conducted to quantify differences between true and estimated accuracies. The simulation used the same clustering methods and response variables, with the addition of 2 genotyping strategies (random and top 25% of individuals), and forward validation. The prediction accuracies were estimated similarly, and true accuracies were estimated as the correlation between the residuals of a bivariate model including true breeding value (TBV) and GBV. Using the adjusted Rand index, random clusters were clearly different from relationship-based clustering methods. In both real and simulated data, random clustering consistently led to the largest estimates of accuracy, while no method was consistently associated with more or less bias than other methods. In simulation, random genotyping led to higher estimated accuracies than selection of the top 25% of individuals. Interestingly, random genotyping seemed to overpredict true accuracy while selective genotyping tended to underpredict accuracy. When forward in time validation was used, DEBV led to less biased estimates of GBV accuracy. Results suggest the highest, least biased GBV accuracies are associated with random genotyping and DEBV.


Subject(s)
Cattle/genetics , Genome/genetics , Genomics , Quantitative Trait Loci/genetics , Animals , Bayes Theorem , Breeding , Cluster Analysis , Computer Simulation , Female , Genotype , Male , Phenotype , Research Design
16.
J Dairy Sci ; 102(3): 2807-2817, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30660425

ABSTRACT

Inbreeding depression is a growing concern in livestock because it can detrimentally affect animal fitness, health, and production levels. Genomic information can be used to more effectively capture variance in Mendelian sampling, thereby enabling more accurate estimation of inbreeding, but further progress is still required. The calculation of inbreeding for herd management purposes is largely still done using pedigree information only, although inbreeding coefficients calculated in this manner have been shown to be less accurate than genomic inbreeding measures. Continuous stretches of homozygous genotypes, so called runs of homozygosity, have been shown to provide a better estimate of autozygosity at the genomic level than conventional measures based on inbreeding coefficients calculated through conventional pedigree information or even genomic relationship matrices. For improved and targeted management of genomic inbreeding at the population level, the development of methods that incorporate genomic information in mate selection programs may provide a more precise tool for reducing the detrimental effects of inbreeding in dairy herds. Additionally, a better understanding of the genomic architecture of inbreeding and incorporating that knowledge into breeding programs could significantly refine current practices. Opportunities to maintain high levels of genetic progress in traits of interest while managing homozygosity and sustaining acceptable levels of heterozygosity in highly selected dairy populations exist and should be examined more closely for continued sustainability of both the dairy cattle population as well as the dairy industry. The inclusion of precise genomic measures of inbreeding, such as runs of homozygosity, inbreeding, and mating programs, may provide a path forward. In this symposium review article, we describe traditional measures of inbreeding and the recent developments made toward more precise measures of homozygosity using genomic information. The effects of homozygosity resulting from inbreeding on phenotypes, the identification and mapping of detrimental homozygosity haplotypes, management of inbreeding with genomic data, and areas in need of further research are discussed.


Subject(s)
Cattle/genetics , Homozygote , Inbreeding Depression , Inbreeding , Animals , Breeding , Dairying , Genome , Haplotypes , Pedigree , Phenotype , Physical Conditioning, Animal , Reproduction
17.
J Anim Sci ; 96(11): 4532-4542, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30107560

ABSTRACT

Across the majority livestock species, routinely collected genomic and pedigree information has been incorporated into evaluations using single-step methods. As a result, strategies that reduce genotyping costs without reducing the response to selection are important as they could have substantial economic impacts on breeding programs. Therefore, the objective of the current study was to investigate the impact of selectively genotyping selection candidates on the selection response using simulation. Populations were simulated to mimic the genome and population structure of a swine and cattle population undergoing selection on an index comprised of the estimated breeding values (EBV) for 2 genetically correlated quantitative traits. Ten generations were generated and genotyping began generation 7. Two phenotyping scenarios were simulated that assumed the first trait was recorded early in life on all individuals and the second trait was recorded on all versus a random subset of the individuals. The EBV were generated from a bivariate animal model. Multiple genotyping scenarios were generated that ranged from not genotyping any selection candidates, a proportion of the selection candidates based on either their index value or chosen at random, and genotyping all selection candidates. An interim index value was utilized to decide who to genotype for the selective genotype strategy. The interim value assumed only the first trait was observed and the only genotypic information available was on animals in previous generations. Within each genotyping scenario 25 replicates were generated. Within each genotyping scenario the mean response per generation and the degree to which EBV were inflated/deflated was calculated. Across both species and phenotyping strategies, the plateau of diminishing returns was observed when 60% of the selection candidates with the largest index values were genotyped. When randomly genotyping selection candidates, either 80 or 100% of the selection candidates needed to be genotyped for there not to be a reduction in the index response. Across both populations, no differences in the degree that EBV were inflated/deflated for either trait 1 or 2 were observed between nongenotyped and genotyped animals. The current study has shown that animals can be selectively genotyped in order to optimize the response to selection as a function of the cost to conduct a breeding program using single-step genomic best linear unbiased prediction.


Subject(s)
Cattle/genetics , Genome/genetics , Genomics , Linear Models , Swine/genetics , Animals , Breeding , Computer Simulation , Female , Genotype , Genotyping Techniques/veterinary , Male , Pedigree , Phenotype
18.
J Anim Breed Genet ; 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29882604

ABSTRACT

Simulated and swine industry data sets were utilized to assess the impact of removing older data on the predictive ability of selection candidate estimated breeding values (EBV) when using single-step genomic best linear unbiased prediction (ssGBLUP). Simulated data included thirty replicates designed to mimic the structure of swine data sets. For the simulated data, varying amounts of data were truncated based on the number of ancestral generations back from the selection candidates. The swine data sets consisted of phenotypic and genotypic records for three traits across two breeds on animals born from 2003 to 2017. Phenotypes and genotypes were iteratively removed 1 year at a time based on the year an animal was born. For the swine data sets, correlations between corrected phenotypes (Cp) and EBV were used to evaluate the predictive ability on young animals born in 2016-2017. In the simulated data set, keeping data two generations back or greater resulted in no statistical difference (p-value > 0.05) in the reduction in the true breeding value at generation 15 compared to utilizing all available data. Across swine data sets, removing phenotypes from animals born prior to 2011 resulted in a negligible or a slight numerical increase in the correlation between Cp and EBV. Truncating data is a method to alleviate computational issues without negatively impacting the predictive ability of selection candidate EBV.

19.
Front Genet ; 9: 40, 2018.
Article in English | MEDLINE | ID: mdl-29487615

ABSTRACT

In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug concentration across time resulted in estimates with a smaller standard error compared to models that utilized PK parameters. The current study found a low to moderate proportion of the phenotypic variation in metabolizing fenbendazole and flunixin meglumine that was explained by genetics in the current study.

20.
J Dairy Sci ; 100(8): 6009-6024, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28601448

ABSTRACT

Traditionally, pedigree-based relationship coefficients have been used to manage the inbreeding and degree of inbreeding depression that exists within a population. The widespread incorporation of genomic information in dairy cattle genetic evaluations allows for the opportunity to develop and implement methods to manage populations at the genomic level. As a result, the realized proportion of the genome that 2 individuals share can be more accurately estimated instead of using pedigree information to estimate the expected proportion of shared alleles. Furthermore, genomic information allows genome-wide relationship or inbreeding estimates to be augmented to characterize relationships for specific regions of the genome. Region-specific stretches can be used to more effectively manage areas of low genetic diversity or areas that, when homozygous, result in reduced performance across economically important traits. The use of region-specific metrics should allow breeders to more precisely manage the trade-off between the genetic value of the progeny and undesirable side effects associated with inbreeding. Methods tailored toward more effectively identifying regions affected by inbreeding and their associated use to manage the genome at the herd level, however, still need to be developed. We have reviewed topics related to inbreeding, measures of relatedness, genetic diversity and methods to manage populations at the genomic level, and we discuss future challenges related to managing populations through implementing genomic methods at the herd and population levels.


Subject(s)
Cattle/genetics , Genomics , Inbreeding Depression , Inbreeding , Animals , Pedigree , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...