Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neurotrauma ; 34(11): 1915-1918, 2017 06 01.
Article in English | MEDLINE | ID: mdl-26370183

ABSTRACT

To date, outcomes for all Phase III clinical trials for traumatic brain injury (TBI) have been negative. The recent disappointing results of the Progesterone for the Treatment of Traumatic Brain Injury (ProTECT) and Study of a Neuroprotective Agent, Progesterone, in Severe Traumatic Brain Injury (SyNAPSe) Phase III trials for progesterone in TBI have triggered considerable speculation about the reasons for the negative outcomes of these two studies in particular and for those of all previous Phase III TBI clinical trials in general. Among the factors proposed to explain the ProTECT III and SyNAPSe results, the investigators themselves and others have cited: 1) the pathophysiological complexity of TBI itself; 2) issues with the quality and clinical relevance of the preclinical animal models; 3) insufficiently sensitive clinical endpoints; and 4) inappropriate clinical trial designs and strategies. This paper highlights three critical trial design factors that may have contributed substantially to the negative outcomes: 1) suboptimal doses and treatment durations in the Phase II studies; 2) the strategic decision not to perform Phase IIB studies to optimize these variables before initiating Phase III; and 3) the lack of incorporation of the preclinical and Chinese Phase II results, as well as allometric scaling principles, into the Phase III designs. Given these circumstances and the exceptional pleiotropic potential of progesterone as a TBI (and stroke) therapeutic, we are advocating a return to Phase IIB testing. We advocate the incorporation of dose and schedule optimization focused on lower doses and a longer duration of treatment, combined with the addressing of other potential trial design problems raised by the authors in the recently published trial results.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Clinical Trials, Phase III as Topic/methods , Progesterone/administration & dosage , Progestins/administration & dosage , Animals , Brain Injuries, Traumatic/diagnosis , Clinical Trials, Phase II as Topic/methods , Dose-Response Relationship, Drug , Glasgow Coma Scale , Humans , Neuroprotective Agents/administration & dosage
2.
ACS Med Chem Lett ; 7(5): 537-42, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190606

ABSTRACT

The orally bioavailable 1-deoxy-sphingosine analog, Enigmol, has demonstrated anticancer activity in numerous in vivo settings. However, as no Enigmol analog with enhanced potency in vitro has been identified, a new strategy to improve efficacy in vivo by increasing tumor uptake was adopted. Herein, synthesis and biological evaluation of two novel fluorinated Enigmol analogs, CF3-Enigmol and CF2-Enigmol, are reported. Each analog was equipotent to Enigmol in vitro, but achieved higher plasma and tissue levels than Enigmol in vivo. Although plasma and tissue exposures were anticipated to trend with fluorine content, CF2-Enigmol absorbed into tissue at strikingly higher concentrations than CF3-Enigmol. Using mouse xenograft models of prostate cancer, we also show that CF3-Enigmol underperformed Enigmol-mediated inhibition of tumor growth and elicited systemic toxicity. By contrast, CF2-Enigmol was not systemically toxic and demonstrated significantly enhanced antitumor activity as compared to Enigmol.

3.
Curr Cancer Drug Targets ; 14(4): 380-93, 2014.
Article in English | MEDLINE | ID: mdl-24628271

ABSTRACT

The natural compound curcumin has been investigated as an anticancer agent in many cellular systems, in animal models and in the clinic. The overriding negative characteristics of curcumin are its low solubility, weak potency and poor bioavailability. We have examined the efficacy and mechanism of action of a synthetic curcumin analog, UBS109, in head and neck squamous cell carcinoma. By nephelometry, this analog exhibits considerably greater solubility than curcumin. Pharmacokinetic studies of a single oral dose of UBS109 in mice revealed that peak plasma concentrations were reached at 0.5 hours post-dose (Tmax) with average plasma concentrations (Cmax) of 131 and 248 ng/mL for oral doses of 50 and 150 mg/kg, respectively. The terminal elimination half-lives (T½) for these doses averaged 3.7 and 4.5 hours, respectively. In both in vitro and in vivo studies, we found that UBS109 decreased the levels of phosphorylated IKKß and phosphorylated p65 and, unexpectedly, increased the levels of phosphorylated IκBα by Western blot analysis. These observations may suggest that UBS109 suppresses tumor growth through, in part, inhibition of NF-κB p65 phosphorylation by PKAc and not through IκBα. Finally, we demonstrate that UBS109 is efficacious in retarding the growth of Tu212 (head and neck) squamous cell carcinoma (SCC) xenograft tumors in mice and may be useful for treating head and neck SCC tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Curcumin/analogs & derivatives , Head and Neck Neoplasms/drug therapy , Piperidones/therapeutic use , Pyridines/therapeutic use , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival/drug effects , Curcumin/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Female , Half-Life , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , I-kappa B Kinase/metabolism , Mice, Inbred ICR , Mice, Nude , Neoplasm Proteins/metabolism , Phosphorylation/drug effects , Piperidones/metabolism , Piperidones/pharmacokinetics , Piperidones/pharmacology , Protein Processing, Post-Translational/drug effects , Pyridines/metabolism , Pyridines/pharmacokinetics , Pyridines/pharmacology , Random Allocation , Specific Pathogen-Free Organisms , Squamous Cell Carcinoma of Head and Neck , Transcription Factor RelA/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
ACS Med Chem Lett ; 4(11): 1025-30, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24936240

ABSTRACT

A de novo hit-to-lead effort involving the redesign of benzimidazole-containing antagonists of the CXCR4 receptor resulted in the discovery of a novel series of 1,2,3,4-tetrahydroisoquinoline (TIQ) analogues. In general, this series of compounds show good potencies (3-650 nM) in assays involving CXCR4 function, including both inhibition of attachment of X4 HIV-1IIIB virus in MAGI-CCR5/CXCR4 cells and inhibition of calcium release in Chem-1 cells. Series profiling permitted the identification of TIQ-(R)-stereoisomer 15 as a potent and selective CXCR4 antagonist lead candidate with a promising in vitro profile. The drug-like properties of 15 were determined in ADME in vitro studies, revealing low metabolic liability potential. Further in vivo evaluations included pharmacokinetic experiments in rats and mice, where 15 was shown to have oral bioavailability (F = 63%) and resulted in the mobilization of white blood cells (WBCs) in a dose-dependent manner.

5.
Integr Biol (Camb) ; 4(6): 633-40, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22532032

ABSTRACT

Objectives are to examine the efficacy, pharmacokinetics, and toxicology of a synthetic curcumin analog EF31 in head and neck squamous cell carcinoma. The synthesis of EF31 was described for the first time. Solubility of EF24 and EF31 was compared using nephelometric analysis. Human head and neck squamous cell carcinoma Tu212 xenograft tumors were established in athymic nude mice and treated with EF31 i.p. once daily five days a week for about 5-6 weeks. The long term effect of EF31 on the NF-κB signaling system in the tumors was examined by Western blot analysis. EF31 at 25 mg kg(-1), i.p. inhibited tumor growth almost completely. Solubilities of EF24 and EF31 are <10 and 13 µg mL(-1) or <32 and 47 µM, respectively. The serum chemistry profiles of treated mice were within the limits of normal, they revealed a linear increase of C(max). EF31 decreased the level of phosphorylation of NF-κB p65. In conclusion, the novel synthetic curcumin analog EF31 is efficacious in inhibiting the growth of Tu212 xenograft tumors and may be useful for treating head and neck squamous cell carcinoma. The long term EF31 treatment inhibited NF-κB p65 phosphorylation in xenografts, implicating downregulation of cancer promoting transcription factors such as angiogenesis and metastasis.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Curcumin/analogs & derivatives , Head and Neck Neoplasms/drug therapy , Piperidones/pharmacology , Animals , Blotting, Western , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Survival/drug effects , Curcumin/chemical synthesis , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/pharmacology , Female , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Immunohistochemistry , Male , Mice , Mice, Nude , Phosphorylation/drug effects , Piperidones/chemical synthesis , Piperidones/chemistry , Piperidones/pharmacokinetics , Random Allocation , Signal Transduction/drug effects , Solubility , Specific Pathogen-Free Organisms , Transcription Factor RelA/metabolism , Xenograft Model Antitumor Assays
6.
ACS Med Chem Lett ; 3(1): 43-7, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-24900369

ABSTRACT

Plasmodium-infected erythrocytes have been shown to employ sphingolipids from both endogenous metabolism as well as existing host pools. Therapeutic agents that limit these supplies have thus emerged as intriguing, mechanistically distinct putative targets for the treatment of malaria infections. In an initial screen of our library of sphingolipid pathway modulators for efficacy against two strains of the predominant human malaria species Plasmodium falciparum and Plasmodium knowlesi, a series of orally available, 1-deoxysphingoid bases were found to possess promising in vitro antimalarial activity. To better understand the structural requirements that are necessary for this observed activity, a second series of modified analogues were prepared and evaluated. Initial pharmacokinetic assessments of key analogues were investigated to evaluate plasma and red blood cell concentrations in vivo.

7.
ACS Med Chem Lett ; 3(5): 362-6, 2012 May 10.
Article in English | MEDLINE | ID: mdl-24900479

ABSTRACT

After more than 30 years of research and 30 failed clinical trials with as many different treatments, progesterone is the first agent to demonstrate robust clinical efficacy as a treatment for traumatic brain injuries. It is currently being investigated in two, independent phase III clinical trials in hospital settings; however, it presents a formidable solubility challenge that has so far prevented the identification of a formulation that would be suitable for emergency field response use or battlefield situations. Accordingly, we have designed and tested a novel series of water-soluble analogues that address this critical need. We report here the synthesis of C-20 oxime conjugates of progesterone as therapeutic agents for traumatic brain injuries with comparable efficacy in animal models of traumatic brain injury and improved solubility and pharmacokinetic profiles. Pharmacodynamic analysis reveals that a nonprogesterone steroidal analogue may be primarily responsible for the observed activity.

8.
ACS Med Chem Lett ; 2(6): 438-43, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-24900327

ABSTRACT

Enigmol is a synthetic, orally active 1-deoxysphingoid base analogue that has demonstrated promising activity against prostate cancer. In these studies, the pharmacologic roles of stereochemistry and N-methylation in the structure of enigmols were examined. A novel enantioselective synthesis of all four possible 2S-diastereoisomers of enigmol (2-aminooctadecane-3,5-diols) from l-alanine is reported, which features a Liebeskind-Srogl cross-coupling reaction between l-alanine thiol ester and (E)-pentadec-1-enylboronic acid as the key step. In vitro biological evaluation of the four enigmol diastereoisomers and 2S,3S,5S-N-methylenigmol against two prostate cancer cell lines (PC-3 and LNCaP) indicates that all but one diastereomer demonstrate potent oncolytic activity. In nude mouse xenograft models of human prostate cancer, enigmol was equally effective as standard prostate cancer therapies (androgen deprivation or docetaxel), and two of the enigmol diastereomers, 2S,3S,5R-enigmol and 2S,3R,5S-enigmol, also caused statistically significant inhibition of tumor growth. A pharmacokinetic profile of enigmol and N-methylenigmol is also presented.

9.
J Med Chem ; 50(6): 1304-15, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17323940

ABSTRACT

Starting from a simple chalcone template, structure-activity relationship (SAR) studies led to a series of carboxylated, heteroaryl-substituted chalcone derivatives as novel, potent inhibitors of vascular cell adhesion molecule-1 (VCAM-1) expression. Correlations between lipophilicity determined by calculated logP values and inhibitory efficacy were observed among structurally similar compounds of the series. Various substituents were found to be tolerated at several positions of the chalcone backbone as long as the compounds fell into the right range of lipophilicity. The chalcone alpha,beta-unsaturated ketone moiety seemed to be the pharmacophore required for inhibition of VCAM-1 expression. Compound 19 showed significant antiinflammatory effects in a mouse model of allergic inflammation, indicating that this series of compounds might have therapeutic value for human asthma and other inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzoates/chemical synthesis , Chalcones/chemical synthesis , Indoles/chemical synthesis , Vascular Cell Adhesion Molecule-1/biosynthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aorta/cytology , Asthma/immunology , Asthma/prevention & control , Benzoates/chemistry , Benzoates/pharmacology , Cells, Cultured , Chalcones/chemistry , Chalcones/pharmacology , Chronic Disease , Depression, Chemical , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Humans , Indoles/chemistry , Indoles/pharmacology , Inflammation/drug therapy , Male , Mice , Mice, Inbred BALB C , Pulmonary Artery/cytology , Stereoisomerism
10.
J Med Chem ; 47(25): 6420-32, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15566311

ABSTRACT

Vascular cell adhesion molecule-1 (VCAM-1) mediates recruitment of leukocytes to endothelial cells and is implicated in many inflammatory conditions. Since part of the signal transduction pathway that regulates the activation of VCAM-1 expression is redox-sensitive, compounds with antioxidant properties may have inhibitory effects on VCAM-1 expression. Novel phenolic compounds have been designed and synthesized starting from probucol (1). Many of these compounds demonstrated potent inhibitory effects on cytokine-induced VCAM-1 expression and displayed potent antioxidant effects in vitro. Some of these derivatives (4o, 4p, 4w, and 4x) inhibited lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and IL-6 from human peripheral blood mononuclear cells (hPBMCs) in a concentration-dependent manner in vitro and showed antiinflammatory effects in an animal model. Compounds 4ad and 4ae are currently in clinical trials for the treatment of rheumatoid arthritis (RA) and prevention of chronic organ transplant rejection, respectively.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Antioxidants/chemical synthesis , Phenols/chemical synthesis , Sulfides/chemical synthesis , Vascular Cell Adhesion Molecule-1/biosynthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cells, Cultured , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Chronic Disease , Cricetinae , Depression, Chemical , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Inflammation/drug therapy , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Male , Mice , Mice, Inbred BALB C , Phenols/chemistry , Phenols/pharmacology , Probucol/chemistry , Structure-Activity Relationship , Sulfides/chemistry , Sulfides/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
11.
J Neuroimmunol ; 138(1-2): 56-64, 2003 May.
Article in English | MEDLINE | ID: mdl-12742654

ABSTRACT

Immunotherapy improves experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), while excessive production of nitric oxide (NO) has been implicated in the pathogenesis of this disease. Here, we show that disease progression in SJL/J mice with EAE is improved after treatment with either a subtherapeutic dose of cyclosporine A (CsA) or NOX-100, a nitric oxide scavenger. Importantly, the impact of subtherapeutic doses of CsA in combination with NOX-100 on disease progression in EAE was greater than that attained with either agent alone and led to near total protection. CNS inflammation and gene expression of proinflammatory cytokines and iNOS were also significantly reduced after treatment. These observations point to the potential therapeutic utility of NOX-100 as a dose-reducing agent for CsA in the treatment of MS.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cyclosporine/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Free Radical Scavengers/administration & dosage , Immunosuppressive Agents/administration & dosage , Nitric Oxide/metabolism , Organometallic Compounds/pharmacology , Thiocarbamates/pharmacology , Animals , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Cytokines/genetics , Disease Progression , Drug Therapy, Combination , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Enzyme Induction/drug effects , Enzyme Induction/genetics , Female , Injections, Subcutaneous , Mice , Mice, Inbred Strains , Nitrates/blood , Nitric Oxide Synthase/biosynthesis , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase Type II , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/biosynthesis , Up-Regulation/drug effects , Up-Regulation/genetics , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...