Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 104(52): 20690-5, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18093932

ABSTRACT

Land-change science emphasizes the intimate linkages between the human and environmental components of land management systems. Recent theoretical developments in drylands identify a small set of key principles that can guide the understanding of these linkages. Using these principles, a detailed study of seven major degradation episodes over the past century in Australian grazed rangelands was reanalyzed to show a common set of events: (i) good climatic and economic conditions for a period, leading to local and regional social responses of increasing stocking rates, setting the preconditions for rapid environmental collapse, followed by (ii) a major drought coupled with a fall in the market making destocking financially unattractive, further exacerbating the pressure on the environment; then (iii) permanent or temporary declines in grazing productivity, depending on follow-up seasons coupled again with market and social conditions. The analysis supports recent theoretical developments but shows that the establishment of environmental knowledge that is strictly local may be insufficient on its own for sustainable management. Learning systems based in a wider community are needed that combine local knowledge, formal research, and institutional support. It also illustrates how natural variability in the state of both ecological and social systems can interact to precipitate nonequilibrial change in each other, so that planning cannot be based only on average conditions. Indeed, it is this variability in both environment and social subsystems that hinders the local learning required to prevent collapse.


Subject(s)
Conservation of Natural Resources , Environment , Geography , Agriculture , Australia , Disasters , Environmental Pollution , Humans , Models, Biological , Population , Population Dynamics , Population Growth , Time Factors
2.
Proc Natl Acad Sci U S A ; 104(50): 19686-90, 2007 Dec 11.
Article in English | MEDLINE | ID: mdl-18077401

ABSTRACT

We review recent research of importance to understanding crop and pasture plant species response to climate change. Topics include plant response to elevated CO(2) concentration, interactions with climate change variables and air pollutants, impacts of increased climate variability and frequency of extreme events, the role of weeds and pests, disease and animal health, issues in biodiversity, and vulnerability of soil carbon pools. We critically analyze the links between fundamental knowledge at the plant and plot level and the additional socio-economic variables that determine actual production and trade of food at regional to global scales. We conclude by making recommendations for current and future research needs, with a focus on continued and improved integration of experimental and modeling efforts.


Subject(s)
Climate , Crops, Agricultural , Greenhouse Effect , Carbon Dioxide/adverse effects , Forecasting , Humans , Population Growth
3.
Proc Natl Acad Sci U S A ; 104(50): 19691-6, 2007 Dec 11.
Article in English | MEDLINE | ID: mdl-18077402

ABSTRACT

The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.


Subject(s)
Agriculture/trends , Climate , Greenhouse Effect , Animals , Conservation of Natural Resources , Food Supply , Forecasting , Humans , Public Policy
4.
Austral Ecol ; 25(3): 213-222, 2000 Jun.
Article in English | MEDLINE | ID: mdl-32313444

ABSTRACT

This study investigated changes in dormancy and germination over 8 months for 23 common species (annual and perennial grasses, legumes and other dicotyledons) from herbaceous communities in northern Australia. Seeds were exposed to three storage treatments: relatively constant laboratory conditions, an oven with fluctuating temperatures similar to those found on the soil surface (25/60°C), or exposed on the soil surface at Townsville. There were wide ranges of initial levels of dormancy (9-100%), rates of change of dormancy and response to the different storage conditions showing that species with several types of dormancy characteristics are able to coexist in these communities. The general trend in dormancy levels was a decline with time with the rate of decline greatest for seeds exposed on the soil surface and least for those stored in the laboratory. The species were divided into groups based on dormancy levels in seeds on the soil surface during the late dry and mid wet seasons. The dormancy characteristics of the groups were related to the ecology of the species in the groups. There was an approximately linear increase in germination rate (i.e. a decrease in the number of days to 50% of final germination) over time for all storage treatments; rates for seeds on the soil surface increased more rapidly than those of seeds in laboratory and oven samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...