Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Monit ; 14(2): 360-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22038017

ABSTRACT

Inductively coupled plasma mass spectrometry (ICP-MS) is becoming more widely used for trace elemental analysis in the occupational hygiene field, and consequently new ICP-MS international standard procedures have been promulgated by ASTM International and ISO. However, there is a dearth of interlaboratory performance data for this analytical methodology. In an effort to fill this data void, an interlaboratory evaluation of ICP-MS for determining trace elements in workplace air samples was conducted, towards fulfillment of method validation requirements for international voluntary consensus standard test methods. The study was performed in accordance with applicable statistical procedures for investigating interlaboratory precision. The evaluation was carried out using certified 37-mm diameter mixed-cellulose ester (MCE) filters that were fortified with 21 elements of concern in occupational hygiene. Elements were spiked at levels ranging from 0.025 to 10 µg filter(-1), with three different filter loadings denoted "Low", "Medium" and "High". Participating laboratories were recruited from a pool of over fifty invitees; ultimately twenty laboratories from Europe, North America and Asia submitted results. Triplicates of each certified filter with elemental contents at three different levels, plus media blanks spiked with reagent, were conveyed to each volunteer laboratory. Each participant was also provided a copy of the test method which each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the filters by one of three sample preparation procedures, i.e., hotplate digestion, microwave digestion or hot block extraction, which were described in the test method. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS, and to report their data in units of µg filter(-1). Most interlaboratory precision estimates were acceptable for medium- and high-level spikes (RSD <25%), but generally yielded greater uncertainties than were anticipated at the outset of the study.


Subject(s)
Air Pollutants, Occupational/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Laboratories , Trace Elements/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Monitoring/instrumentation , Filtration/instrumentation , Humans , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , Occupational Exposure/analysis , Occupational Exposure/statistics & numerical data , Occupational Health , Spectrophotometry, Atomic
2.
J Occup Environ Hyg ; 6(12): 745-50, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19894175

ABSTRACT

A collaborative interlaboratory evaluation of a newly standardized inductively coupled plasma mass spectrometry (ICP-MS) method for determining trace beryllium in workplace air samples was carried out toward fulfillment of method validation requirements for ASTM International voluntary consensus standard test methods. The interlaboratory study (ILS) was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Uncertainty was also estimated in accordance with ASTM D7440, which applies the International Organization for Standardization Guide to the Expression of Uncertainty in Measurement to air quality measurements. Performance evaluation materials (PEMs) used consisted of 37 mm diameter mixed cellulose ester filters that were spiked with beryllium at levels of 0.025 (low loading), 0.5 (medium loading), and 10 (high loading) microg Be/filter; these spiked filters were prepared by a contract laboratory. Participating laboratories were recruited from a pool of over 50 invitees; ultimately, 20 laboratories from Europe, North America, and Asia submitted ILS results. Triplicates of each PEM (blanks plus the three different loading levels) were conveyed to each volunteer laboratory, along with a copy of the draft standard test method that each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the PEMs by one of three sample preparation procedures (hotplate or microwave digestion or hotblock extraction) that were described in the draft standard. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS and to report their data in units of mu g Be/filter sample. Interlaboratory precision estimates from participating laboratories, computed in accordance with ASTM E691, were 0.165, 0.108, and 0.151 (relative standard deviation) for the PEMs spiked at 0.025, 0.5, and 10 microg Be/filter, respectively. Overall recoveries were 93.2%, 102%, and 80.6% for the low, medium, and high beryllium loadings, respectively. Expanded uncertainty estimates for interlaboratory analysis of low, medium, and high beryllium loadings, calculated in accordance with ASTM D7440, were 18.8%, 19.8%, and 24.4%, respectively. These figures of merit support promulgation of the analytical procedure as an ASTM International standard test method, ASTM D7439.


Subject(s)
Air Pollutants, Occupational/analysis , Beryllium/analysis , Environmental Monitoring/methods , Filtration , Mass Spectrometry/methods
3.
J Environ Monit ; 5(5): 707-16, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14587839

ABSTRACT

Airborne hexavalent chromium (Cr[VI]) is a known human respiratory carcinogen and allergen. Workers in a variety of industries may be exposed to airborne hexavalent chromium, with exposures frequently occurring via inhalation and/or dermal contact. Analytical methods for the measurement of Cr(VI) compounds in workplace samples, rather than for the determination of total elemental chromium in workplace air, are often desired because exposure limit values for Cr(VI) compounds are much lower than for total Cr. For years, sampling and analytical test methods for airborne Cr(VI) have been investigated so as to provide means for occupational exposure assessment to this highly toxic species. Inter-conversion of trivalent chromium (Cr[III]) and Cr(VI) can sometimes occur during sampling and sample preparation, and efforts to minimize unwanted redox reactions involving these chromium valences have been sought. Because of differences in toxicity, there is also interest in the ability to differentiate between water-soluble and insoluble forms of Cr(VI), and procedures that provide solubility information concerning Cr(VI) compounds have been developed. This paper reviews the state of the art concerning the measurement of airborne Cr(VI) compounds in workplace aerosols and related samples.


Subject(s)
Air Pollution, Indoor/analysis , Carcinogens, Environmental/analysis , Chromium/analysis , Environmental Monitoring/methods , Occupational Exposure , Workplace , Carcinogens, Environmental/chemistry , Carcinogens, Environmental/poisoning , Chromium/chemistry , Chromium/poisoning , Humans , Risk Assessment , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...