Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 10: e13490, 2022.
Article in English | MEDLINE | ID: mdl-35694380

ABSTRACT

Landscape structure affects animal movement. Differences between landscapes may induce heterogeneity in home range size and movement rates among individuals within a population. These types of heterogeneity can cause bias when estimating population size or density and are seldom considered during analyses. Individual heterogeneity, attributable to unknown or unobserved covariates, is often modelled using latent mixture distributions, but these are demanding of data, and abundance estimates are sensitive to the parameters of the mixture distribution. A recent extension of spatially explicit capture-recapture models allows landscape structure to be modelled explicitly by incorporating landscape connectivity using non-Euclidean least-cost paths, improving inference, especially in highly structured (riparian & mountainous) landscapes. Our objective was to investigate whether these novel models could improve inference about black bear (Ursus americanus) density. We fit spatially explicit capture-recapture models with standard and complex structures to black bear data from 51 separate study areas. We found that non-Euclidean models were supported in over half of our study areas. Associated density estimates were higher and less precise than those from simple models and only slightly more precise than those from finite mixture models. Estimates were sensitive to the scale (pixel resolution) at which least-cost paths were calculated, but there was no consistent pattern across covariates or resolutions. Our results indicate that negative bias associated with ignoring heterogeneity is potentially severe. However, the most popular method for dealing with this heterogeneity (finite mixtures) yielded potentially unreliable point estimates of abundance that may not be comparable across surveys, even in data sets with 136-350 total detections, 3-5 detections per individual, 97-283 recaptures, and 80-254 spatial recaptures. In these same study areas with high sample sizes, we expected that landscape features would not severely constrain animal movements and modelling non-Euclidian distance would not consistently improve inference. Our results suggest caution in applying non-Euclidean SCR models when there is no clear landscape covariate that is known to strongly influence the movement of the focal species, and in applying finite mixture models except when abundant data are available.


Subject(s)
Ursidae , Animals , Population Density , Movement
2.
Ecol Appl ; 32(7): e2638, 2022 10.
Article in English | MEDLINE | ID: mdl-35441452

ABSTRACT

Information about how animal abundance varies across landscapes is needed to inform management action but is costly and time-consuming to obtain; surveys of a single population distributed over a large area can take years to complete. Surveys employing small, spatially replicated sampling units improve efficiency, but statistical estimators rely on assumptions that constrain survey design or become less reasonable as larger areas are sampled. Efficient methods that avoid assumptions about similarity of detectability or density among replicates are therefore appealing. Using simulations and data from >3500 black bears sampled on 73 independent study areas in Ontario, Canada, we (1) quantified bias induced by unmodeled spatial heterogeneity in detectability and density; (2) evaluated novel, design-based estimators of average density across replicate study areas; and (3) evaluated two estimators of the variance of average density across study areas: an analytic estimator that assumed an underlying homogeneous spatial Poisson point process for the distribution of animals' activity centers, and an empirical estimator of variance across study areas. In simulations where detectability varied in space, assuming spatially constant detectability yielded density estimates that were negatively biased by 20% to 30%; estimating local detectability and density from local data and treating study areas as independent, equal replicates when estimating average density across study areas using the design-based estimator yielded unbiased estimates at local and landscape scales. Similarly, detectability of black bears varied among study areas and estimates of bear density at landscape scales were higher when no information was shared across study areas when estimating detectability. This approach also maximized precision (relative SEs of estimates of average black bear density ranged from 7% to 18%) and computational efficiency. In simulations, the analytic variance estimator was robust to threefold variation in local densities but the empirical estimator performed poorly. Conducting multiple, similar SECR surveys and treating them as independent replicates during analyses allowed us to efficiently estimate density at multiple scales and extents while avoiding biases caused by pooling spatially heterogeneous data. This approach enables researchers to address a wide range of ecological or management-related questions and is applicable with most types of SECR data.


Subject(s)
Ursidae , Animals , Data Collection , Ontario , Population Density
3.
Am J Primatol ; 81(3): e22962, 2019 03.
Article in English | MEDLINE | ID: mdl-30811079

ABSTRACT

The extension of distance sampling methods to accommodate observations from camera traps has recently enhanced the potential to remotely monitor multiple species without the need of additional data collection (sign production and decay rates) or individual identification. However, the method requires that the proportion of time is quantifiable when animals can be detected by the cameras. This can be problematic, for instance, when animals spend time above the ground, which is the case for most primates. In this study, we aimed to validate camera trap distance sampling (CTDS) for the semiarboreal western chimpanzee (Pan troglodytes verus) in Taï National Park, Côte d'Ivoire by estimating abundance of a population of known size and comparing estimates to those from other commonly applied methods. We estimated chimpanzee abundance using CTDS and accounted for limited availability for detection (semiarboreal). We evaluated bias and precision of estimates, as well as costs and efforts required to obtain them, and compared them to those from spatially explicit capture-recapture (SECR) and line transect nest surveys. Abundance estimates obtained by CTDS and SECR produced a similar negligible bias, but CTDS yielded a larger coefficient of variation (CV = 39.70% for CTDS vs. 1%/19% for SECR). Line transects generated the most biased abundance estimates but yielded a better coefficient of variation (27.40-27.85%) than CTDS. Camera trap surveys were twice more costly than line transects because of the initial cost of cameras, while line transects surveys required more than twice as much time in the field. This study demonstrates the potential to obtain unbiased estimates of the abundance of semiarboreal species like chimpanzees by CTDS. HIGHLIGHTS: Camera trap distance sampling produced accurate density estimates for semiarboreal chimpanzees. Availability for detection must be accounted for and can be derived from the activity pattern.


Subject(s)
Pan troglodytes , Photography/methods , Animals , Bias , Cote d'Ivoire , Data Collection/methods , Population Density
4.
Am J Primatol ; 79(7)2017 07.
Article in English | MEDLINE | ID: mdl-28267880

ABSTRACT

Empirical validations of survey methods for estimating animal densities are rare, despite the fact that only an application to a population of known density can demonstrate their reliability under field conditions and constraints. Here, we present a field validation of camera trapping in combination with spatially explicit capture-recapture (SECR) methods for enumerating chimpanzee populations. We used 83 camera traps to sample a habituated community of western chimpanzees (Pan troglodytes verus) of known community and territory size in Taï National Park, Ivory Coast, and estimated community size and density using spatially explicit capture-recapture models. We aimed to: (1) validate camera trapping as a means to collect capture-recapture data for chimpanzees; (2) validate SECR methods to estimate chimpanzee density from camera trap data; (3) compare the efficacy of targeting locations frequently visited by chimpanzees versus deploying cameras according to a systematic design; (4) evaluate the performance of SECR estimators with reduced sampling effort; and (5) identify sources of heterogeneity in detection probabilities. Ten months of camera trapping provided abundant capture-recapture data. All weaned individuals were detected, most of them multiple times, at both an array of targeted locations, and a systematic grid of cameras positioned randomly within the study area, though detection probabilities were higher at targeted locations. SECR abundance estimates were accurate and precise, and analyses of subsets of the data indicated that the majority of individuals in a community could be detected with as few as five traps deployed within their territory. Our results highlight the potential of camera trapping for cost-effective monitoring of chimpanzee populations.


Subject(s)
Environmental Monitoring/methods , Pan troglodytes , Photography , Animals , Cote d'Ivoire , Environment , Population Density , Reproducibility of Results
5.
PLoS One ; 12(2): e0172319, 2017.
Article in English | MEDLINE | ID: mdl-28235066

ABSTRACT

The processes leading to genetic isolation influence a population's local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus) are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i) a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been irreversibly modified by humans, and form strong barriers to movement.


Subject(s)
Conservation of Natural Resources , Genetics, Population , Reproductive Isolation , Ursidae/genetics , Animals , Genetic Variation , Inbreeding , Microsatellite Repeats/genetics , Population Density , Population Dynamics
6.
BMC Ecol ; 15: 21, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26303656

ABSTRACT

BACKGROUND: As habitat degradation and fragmentation continue to impact wildlife populations around the world, it is critical to understand the behavioral flexibility of species in these environments. In Uganda, the mostly unprotected forest fragment landscape between the Budongo and Bugoma Forests is a potential corridor for chimpanzees, yet little is known about the status of chimpanzee populations in these fragments. RESULTS: From 2011 through 2013, we noninvasively collected 865 chimpanzee fecal samples across 633 km(2) and successfully genotyped 662 (77%) at up to 14 microsatellite loci. These genotypes corresponded to 182 chimpanzees, with a mean of 3.5 captures per individual. We obtained population size estimates of 256 (95% confidence interval 246-321) and 319 (288-357) chimpanzees using capture-with-replacement and spatially explicit capture-recapture models, respectively. The spatial clustering of associated genotypes suggests the presence of at least nine communities containing a minimum of 8-33 individuals each. Putative community distributions defined by the locations of associated genotypes correspond well with the distribution of 14 Y-chromosome haplotypes. CONCLUSIONS: These census figures are more than three times greater than a previous estimate based on an extrapolation from small-scale nest count surveys that tend to underestimate population size. The distribution of genotype clusters and Y-chromosome haplotypes together indicate the presence of numerous male philopatric chimpanzee communities throughout the corridor habitat. Our findings demonstrate that, despite extensive habitat loss and fragmentation, chimpanzees remain widely distributed and exhibit distinct community home ranges. Our results further imply that elusive and rare species may adapt to degraded habitats more successfully than previously believed. Their long-term persistence is unlikely, however, if protection is not afforded to them and habitat loss continues unabated.


Subject(s)
Endangered Species , Pan troglodytes/genetics , Animals , Feces , Female , Forests , Genotype , Haplotypes , Male , Microsatellite Repeats , Models, Theoretical , Population Density , Sequence Analysis, DNA , Uganda , Y Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...