Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Surg Neurol Int ; 15: 181, 2024.
Article in English | MEDLINE | ID: mdl-38840612

ABSTRACT

Background: Frameless image-guided radiosurgery (IGRS) is an effective and non-invasive method of treating patients who are unresponsive to medical management for trigeminal neuralgia (TN). This study evaluated the use of frameless IGRS to treat patients with medically refractory TN. Methods: We performed a retrospective review of records of 116 patients diagnosed with TN who underwent frameless IGRS using a linear accelerator (LINAC) over 10 years (March 2012-February 2023). All patients had failed medical management for TN. Facial pain was graded using the Barrow Neurological Institute (BNI) scoring system. Each patient received a BNI score before frameless IGRS and following treatment. Failure was defined as a BNI score IV-V at the last follow-up and/or undergoing a salvage procedure following IGRS. Results: All patients had a BNI score of either IV or V before the frameless IGRS. The mean follow-up duration for all 116 patients following IGRS was 44.1 months. Most patients (81 [69.8%]) had not undergone surgery (microvascular decompression [MVD] or rhizotomy) or stereotactic radiosurgery (SRS) for TN before frameless IGRS. A total of 41 (35.3%) patients underwent a salvage procedure (MVD, rhizotomy, or an additional IGRS) following frameless IGRS. The mean duration between the initial frameless IGRS and salvage procedure was 20.1 months. At the last follow-up, a total of 110 (94.8%) patients had a BNI score of I-III. No complications were reported after the frameless IGRS. The BNI score at the last follow-up was lower compared to the initial BNI for patients regardless of prior intervention (P < 0.001). Patients who failed IGRS had a higher BNI score at the last follow-up compared to those who did not fail IGRS (2.8 vs. 2.5, P = 0.05). Patients with pain relief had a shorter follow-up compared to those with pain refractory to SRS (38.0 vs. 55.1, P = 0.005). Conclusion: In this large cohort of patients with medically refractory TN, frameless IGRS resulted in durable pain control in the majority of patients without any toxicity.

2.
J Appl Clin Med Phys ; 18(4): 123-132, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28517492

ABSTRACT

Occipital neuralgia generally responds to medical or invasive procedures. Repeated invasive procedures generate increasing complications and are often contraindicated. Stereotactic radiosurgery (SRS) has not been reported as a treatment option largely due to the extracranial nature of the target as opposed to the similar, more established trigeminal neuralgia. A dedicated phantom study was conducted to determine the optimum imaging studies, fusion matrices, and treatment planning parameters to target the C2 dorsal root ganglion which forms the occipital nerve. The conditions created from the phantom were applied to a patient with medically and surgically refractory occipital neuralgia. A dose of 80 Gy in one fraction was prescribed to the C2 occipital dorsal root ganglion. The phantom study resulted in a treatment achieved with an average translational magnitude of correction of 1.35 mm with an acceptable tolerance of 0.5 mm and an average rotational magnitude of correction of 0.4° with an acceptable tolerance of 1.0°. For the patient, the spinal cord was 12.0 mm at its closest distance to the isocenter and received a maximum dose of 3.36 Gy, a dose to 0.35 cc of 1.84 Gy, and a dose to 1.2 cc of 0.79 Gy. The brain maximum dose was 2.20 Gy. Treatment time was 59 min for 18, 323 MUs. Imaging was performed prior to each arc delivery resulting in 21 imaging sessions. The average deviation magnitude requiring a positional or rotational correction was 0.96 ± 0.25 mm, 0.8 ± 0.41°, whereas the average deviation magnitude deemed within tolerance was 0.41 ± 0.12 mm, 0.57 ± 0.28°. Dedicated quality assurance of the treatment planning and delivery is necessary for safe and accurate SRS to the cervical spine dorsal root ganglion. With additional prospective study, linear accelerator-based frameless radiosurgery can provide an accurate, noninvasive alternative for treating occipital neuralgia where an invasive procedure is contraindicated.


Subject(s)
Neuralgia/radiotherapy , Particle Accelerators , Phantoms, Imaging , Radiosurgery/methods , Humans , Neuralgia/diagnostic imaging , Prospective Studies , Radiotherapy Dosage
3.
J Appl Clin Med Phys ; 16(2): 5183, 2015 Mar 08.
Article in English | MEDLINE | ID: mdl-26103187

ABSTRACT

A dataset range of isocenter congruency verification tests have been examined from a statistical perspective for the purpose of establishing tolerance levels that are meaningful, based on the fundamental limitation of linear accelerator isocentricity and the demands of a high-precision stereotactic radiosurgery program. Using a laser-defined isocenter, a total of 149 individual isocenter congruency tests were examined with recorded values for ideal spatial corrections to the isocenter test tool. These spatial corrections were determined from radiation exposures recorded on an electronic portal imaging device (EPID) at various gantry, collimator, and treatment couch combinations. The limitations of establishing an ideal isocenter were quantified from each variable which contributed to uncertainty in isocenter definition. Individual contributors to uncertainty, specifically, daily positioning setup errors, gantry sag, multileaf collimator (MLC) offset, and couch walkout, were isolated from isocenter congruency measurements to determine a clinically meaningful isocenter measurement. Variations in positioning of the test tool constituted, on average, 0.38 mm magnitude of correction. Gantry sag and MLC offset contributed 0.4 and 0.16 mm, respectively. Couch walkout had an average degrading effect to isocenter of 0.72 mm. Considering the magnitude of uncertainty contributed by each uncertainty variable and the nature of their combination, an appropriate schedule action and immediate action level were determined for use in analyzing daily isocenter congruency test results in a stereotactic radiosurgery (SRS) program. The recommendations of this study for this linear accelerator include a schedule action level of 1.25 mm and an immediate action level of 1.50mm, requiring prompt correction response from clinical medical physicists before SRS or stereotactic body radiosurgery (SBRT) is administered. These absolute values were derived from considering relative data from a specific linear accelerator and, therefore, represent a means by which a numerical quantity can be used as a test threshold with relative specificity to a particular linear accelerator.


Subject(s)
Particle Accelerators/standards , Patient Positioning , Radiosurgery/instrumentation , Radiotherapy Setup Errors , Algorithms , Calibration , Equipment Design , Humans , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...