Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineered ; 5(6): 378-85, 2014.
Article in English | MEDLINE | ID: mdl-25482084

ABSTRACT

The collagen like domain Scl2 from Streptococcus pyogenes has been proposed as a potential biomedical material. It is non-cytotoxic and non-immunogenic and can be prepared in good yield in fermentation. The Scl2 collagen domain is about a quarter of the length, 234 residues, of the main collagen type, mammalian type I collagen (1014 residues) that is currently used in biomedical devices. In the present study we have made constructs comprising 1 to 4 copies of the Scl2 collagen domain, plus these same constructs with a CysCys sequence at the C-terminal, analogous to that found in mammalian type III collagens. The yields of these constructs were examined from 2 L fermentation studies. The yields of both series declined with increasing size. Circular dichroism showed that the addition of further collagen domains did not lead to a change in the melting temperature compared to the monomer domain. Addition of the CysCys sequence led to a small additional stabilization of about 2-3°C for the monomer construct when the folding (V) domain was present.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Collagen/chemistry , Collagen/metabolism , Streptococcus pyogenes/metabolism , Molecular Sequence Data , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Transition Temperature
2.
Appl Microbiol Biotechnol ; 98(4): 1807-15, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24402415

ABSTRACT

Recently, a different class of collagen-like molecules has been identified in numerous bacteria. Initial studies have shown that these collagens are readily produced in Escherichia coli and they have been isolated and purified by various small-scale chromatography approaches. These collagens are non-cytotoxic, are non-immunogenic, and can be produced in much higher yields than mammalian collagens, making them potential new collagens for biomedical materials. One of the major drawbacks with large-scale fermentation of collagens has been appropriate scalable down-stream processing technologies. Like other collagens, the triple helical domains of bacterial collagens are particularly resistant to proteolysis. The present study describes the development and optimization of a simple, scalable procedure using a combination of acid precipitation of the E. coli host proteins, followed by proteolysis of residual host proteins to produce purified collagens in large scale without the use of chromatographic methods.


Subject(s)
Biotechnology/methods , Collagen/metabolism , Recombinant Proteins/metabolism , Biotechnology/economics , Collagen/genetics , Recombinant Proteins/genetics
3.
Microb Cell Fact ; 11: 146, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23126526

ABSTRACT

BACKGROUND: Collagen has proved valuable as biomedical materials for a range of clinical applications, particularly in wound healing. It is normally produced from animal sources, such as from bovines, but concerns have emerged over transmission of diseases. Recombinant collagens would be preferable, but are difficult to produce. Recently, studies have shown that 'collagens' from bacteria, including Streptococcus pyogenes, can be produced in the laboratory as recombinant products, and that these are biocompatible. In the present study we have established that examples of bacterial collagens can be produced in a bioreactor with high yields providing proof of manufacture of this important group of proteins. RESULTS: Production trials in shake flask cultures gave low yields of recombinant product, < 1 g/L. Increased yields, of around 1 g/L, were obtained when the shake flask process was transferred to a stirred tank bioreactor, and the yield was further enhanced to around 10 g/L by implementation of a high cell density fed-batch process and the use of suitably formulated fully defined media. Similar yields were obtained with 2 different constructs, one containing an introduced heparin binding domain. The best yields, of up to 19 g/L were obtained using this high cell density strategy, with an extended 24 h production time. CONCLUSIONS: These data have shown that recombinant bacterial collagen from S. pyogenes, can be produced in sufficient yield by a scalable microbial production process to give commercially acceptable yields for broad use in biomedical applications.


Subject(s)
Bacterial Proteins/metabolism , Collagen/metabolism , Streptococcus pyogenes/metabolism , Bacterial Proteins/genetics , Biocompatible Materials/metabolism , Bioreactors/microbiology , Collagen/genetics , Culture Media/metabolism , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Temperature
4.
Bioorg Med Chem ; 18(15): 5647-60, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20619664

ABSTRACT

Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or 'attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for gamma-methylene gamma-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognised by a single conformation of the EcR binding pocket.


Subject(s)
Ligands , Receptors, Steroid/antagonists & inhibitors , Acetamides/chemical synthesis , Acetamides/chemistry , Acetamides/toxicity , Binding Sites , Computer Simulation , Quantitative Structure-Activity Relationship , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...