Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855935

ABSTRACT

Targeted protein degradation (TPD) has emerged as an effective therapeutic strategy for a wide range of diseases; however, the blood-brain barrier (BBB) limits access of degraders into the central nervous system (CNS). Here, we present a new class of bifunctional small molecules, called TransMoDEs (Transcytosis-inducing molecular degraders of extracellular proteins), capable of both (1) removal of target protein via lysosomal proteolysis and (2) transcytosis of protein targets across brain endothelial cells. TransMoDEs are derived from Angiopep-2, a peptide motif previously employed as a covalent tag to facilitate receptor-mediated transcytosis across the BBB. We demonstrate that TransMoDEs containing either a biotin or chloroalkane ligand can trigger endocytosis of streptavidin or HaloTag protein, respectively. Interestingly, although low-density lipoprotein receptor-related protein 1 (LRP1) has been reported as the primary receptor for Angiopep-2, TransMoDE-mediated target uptake does not rely exclusively on this pathway. Furthermore, TransMoDE-mediated endocytosis of streptavidin in a bEnd.3 BBB model occurs in a clathrin-mediated mechanism and results in both lysosomal localization and transcytosis of the target protein. This study demonstrates that TransMoDEs can recruit, transcytose, and degrade proteins of interest in cells relevant to the CNS, supporting their further development for the removal of pathogenic neuroproteins.

2.
Nat Chem Biol ; 17(9): 947-953, 2021 09.
Article in English | MEDLINE | ID: mdl-34413525

ABSTRACT

Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy. Most TPD technologies use the ubiquitin-proteasome system, and are therefore limited to targeting intracellular proteins. To address this limitation, we developed a class of modular, bifunctional synthetic molecules called MoDE-As (molecular degraders of extracellular proteins through the asialoglycoprotein receptor (ASGPR)), which mediate the degradation of extracellular proteins. MoDE-A molecules mediate the formation of a ternary complex between a target protein and ASGPR on hepatocytes. The target protein is then endocytosed and degraded by lysosomal proteases. We demonstrated the modularity of the MoDE-A technology by synthesizing molecules that induce depletion of both antibody and proinflammatory cytokine proteins. These data show experimental evidence that nonproteinogenic, synthetic molecules can enable TPD of extracellular proteins in vitro and in vivo. We believe that TPD mediated by the MoDE-A technology will have widespread applications for disease treatment.


Subject(s)
Asialoglycoprotein Receptor/metabolism , Small Molecule Libraries/pharmacology , Animals , Dinitrophenols/chemistry , Dinitrophenols/metabolism , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Small Molecule Libraries/chemistry
3.
J Immunol ; 197(7): 2936-47, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27559046

ABSTRACT

Indian rhesus macaques (Macaca mulatta) are routinely used in preclinical studies to evaluate therapeutic Abs and candidate vaccines. The efficacy of these interventions in many cases is known to rely heavily on the ability of Abs to interact with a set of Ab FcγR expressed on innate immune cells. Yet, despite their presumed functional importance, M. mulatta Ab receptors are largely uncharacterized, posing a fundamental limit to ensuring accurate interpretation and translation of results from studies in this model. In this article, we describe the binding characteristics of the most prevalent allotypic variants of M. mulatta FcγR for binding to both human and M. mulatta IgG of varying subclasses. The resulting determination of the affinity, specificity, and glycan sensitivity of these receptors promises to be useful in designing and evaluating studies of candidate vaccines and therapeutic Abs in this key animal model and exposes significant evolutionary divergence between humans and macaques.


Subject(s)
Immunoglobulin G/immunology , Receptors, Fc/immunology , Animals , Binding Sites , Genetic Variation/genetics , Humans , Macaca mulatta , Receptors, Fc/genetics , Receptors, Fc/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...