Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 3114, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210470

ABSTRACT

On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories.


Subject(s)
SARS-CoV-2
2.
Nat Commun ; 13(1): 751, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136068

ABSTRACT

Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Universities , COVID-19/prevention & control , COVID-19/virology , Contact Tracing , Genome, Viral/genetics , Genomics , Humans , Phylogeny , RNA, Viral/genetics , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Students , United Kingdom/epidemiology , Universities/statistics & numerical data
3.
Sci Rep ; 12(1): 2883, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190592

ABSTRACT

We report the development of a large scale process for heat inactivation of clinical COVID-19 samples prior to laboratory processing for detection of SARS-CoV-2 by RT-qPCR. With more than 266 million confirmed cases, over 5.26 million deaths already recorded at the time of writing, COVID-19 continues to spread in many parts of the world. Consequently, mass testing for SARS-CoV-2 will remain at the forefront of the COVID-19 response and prevention for the near future. Due to biosafety considerations the standard testing process requires a significant amount of manual handling of patient samples within calibrated microbiological safety cabinets. This makes the process expensive, effects operator ergonomics and restricts testing to higher containment level laboratories. We have successfully modified the process by using industrial catering ovens for bulk heat inactivation of oropharyngeal/nasopharyngeal swab samples within their secondary containment packaging before processing in the lab to enable all subsequent activities to be performed in the open laboratory. As part of a validation process, we tested greater than 1200 clinical COVID-19 samples and showed less than 1 Cq loss in RT-qPCR test sensitivity. We also demonstrate the bulk heat inactivation protocol inactivates a murine surrogate of human SARS-CoV-2. Using bulk heat inactivation, the assay is no longer reliant on containment level 2 facilities and practices, which reduces cost, improves operator safety and ergonomics and makes the process scalable. In addition, heating as the sole method of virus inactivation is ideally suited to streamlined and more rapid workflows such as 'direct to PCR' assays that do not involve RNA extraction or chemical neutralisation methods.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Containment of Biohazards/methods , Hot Temperature , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Specimen Handling/methods , Virus Inactivation , Animals , COVID-19/virology , Cell Line , Humans , Mice , Murine hepatitis virus/genetics , RNA, Viral/genetics , RNA, Viral/isolation & purification , Sensitivity and Specificity
4.
Elife ; 102021 04 08.
Article in English | MEDLINE | ID: mdl-33830018

ABSTRACT

The BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech) is being utilised internationally for mass COVID-19 vaccination. Evidence of single-dose protection against symptomatic disease has encouraged some countries to opt for delayed booster doses of BNT162b2, but the effect of this strategy on rates of asymptomatic SARS-CoV-2 infection remains unknown. We previously demonstrated frequent pauci- and asymptomatic SARS-CoV-2 infection amongst healthcare workers (HCWs) during the UK's first wave of the COVID-19 pandemic, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates and find a fourfold reduction in asymptomatic infection amongst HCWs ≥12 days post-vaccination. These data provide real-world evidence of short-term protection against asymptomatic SARS-CoV-2 infection following a single dose of BNT162b2 vaccine, suggesting that mass first-dose vaccination will reduce SARS-CoV-2 transmission, as well as the burden of COVID-19 disease.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Asymptomatic Infections/therapy , BNT162 Vaccine , COVID-19/diagnosis , COVID-19 Vaccines/administration & dosage , Health Personnel , Humans , Immunization Schedule , Immunization, Secondary , SARS-CoV-2/isolation & purification , Vaccination
5.
SLAS Discov ; 23(7): 719-731, 2018 08.
Article in English | MEDLINE | ID: mdl-29787326

ABSTRACT

Flow cytometry is a powerful tool providing multiparametric analysis of single cells or particles. The introduction of faster plate-based sampling technologies on flow cytometers has transformed the technology into one that has become attractive for higher throughput drug discovery screening. This article describes AstraZeneca's perspectives on the deployment and application of high-throughput flow cytometry (HTFC) platforms for small-molecule high-throughput screening (HTS), structure-activity relationship (SAR) and phenotypic screening, and antibody screening. We describe the overarching HTFC workflow, including the associated automation and data analysis, along with a high-level overview of our HTFC assay portfolio. We go on to discuss the practical challenges encountered and solutions adopted in the course of our deployment of HTFC, as well as future enhancements and expansion of the technology to new areas of drug discovery.


Subject(s)
Drug Discovery , Flow Cytometry , High-Throughput Screening Assays , Automation , Drug Discovery/methods , Drug Industry , Flow Cytometry/methods , Small Molecule Libraries , Structure-Activity Relationship , Workflow
6.
Biochem J ; 473(18): 2881-91, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27422784

ABSTRACT

Dual-agonist molecules combining glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activity represent an exciting therapeutic strategy for diabetes treatment. Although challenging due to shared downstream signalling pathways, determining the relative activity of dual agonists at each receptor is essential when developing potential novel therapeutics. The challenge is exacerbated in physiologically relevant cell systems expressing both receptors. To this end, either GIP receptors (GIPR) or GLP-1 receptors (GLP-1R) were ablated via RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonucleases in the INS-1 pancreatic ß-cell line. Multiple clonal cell lines harbouring gene disruptions for each receptor were isolated and assayed for receptor activity to identify functional knockouts (KOs). cAMP production in response to GIPR or GLP-1R activation was abolished and GIP- or GLP-1-induced potentiation of glucose-stimulated insulin secretion (GSIS) was attenuated in the cognate KO cell lines. The contributions of individual receptors derived from cAMP and GSIS assays were confirmed in vivo using GLP-1R KO mice in combination with a monoclonal antibody antagonist of GIPR. We have successfully applied CRISPR/Cas9-engineered cell lines to determining selectivity and relative potency contributions of dual-agonist molecules targeting receptors with overlapping native expression profiles and downstream signalling pathways. Specifically, we have characterised molecules as biased towards GIPR or GLP-1R, or with relatively balanced potency in a physiologically relevant ß-cell system. This demonstrates the broad utility of CRISPR/Cas9 when applied to native expression systems for the development of drugs that target multiple receptors, particularly where the balance of receptor activity is critical.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Glucagon-Like Peptide 1/agonists , Islets of Langerhans/cytology , Receptors, Gastrointestinal Hormone/agonists , Animals , Cell Line , Glucose/pharmacology , Glucose Tolerance Test , Humans , Insulin/metabolism , Insulin Secretion , Karyotyping , Mice , Mice, Knockout , Receptors, Gastrointestinal Hormone/genetics
7.
J Biomol Screen ; 21(1): 24-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26450103

ABSTRACT

Calcitonin gene-related peptide (CGRP) is a small neuropeptide and a potent vasodilator that is widely associated with chronic pain and migraine. An antibody that inhibits CGRP function would be a potential therapeutic for treatment of these disorders. Here we describe the isolation of highly potent antibodies to CGRP from phage and ribosome display libraries and characterization of their epitope, species cross-reactivity, kinetics, and functional activity. Homogenous time-resolved fluorescence (HTRF) binding assays identified antibodies with the desired species cross-reactivity from naïve libraries, and HTRF epitope competition assays were used to characterize and group scFv by epitope. The functional inhibition of CGRP and species cross-reactivity of purified scFv and antibodies were subsequently confirmed using cAMP assays. We show that epitope competition assays could be used as a surrogate for functional cell-based assays during affinity maturation, in combination with scFv off-rate ranking by biolayer interferometry (BLI). This is the first time it has been shown that off-rate ranking can be predictive of functional activity for anti-CGRP antibodies. Here we demonstrate how, by using just four simple assays, diverse panels of antibodies to CGRP can be identified. These assay formats have potential utility in the identification of antibodies to other therapeutic targets.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Biological Assay/methods , Calcitonin Gene-Related Peptide/immunology , Cell Line , Epitopes/immunology , Fluorescence , Humans
8.
J Biomol Screen ; 20(4): 433-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25805607

ABSTRACT

In this special issue of the Journal of biomolecular screening, we have assembled a series of articles that exemplify and discuss various aspects and challenges associated with the discovery, development, and manufacture of biologics with an emphasis on those topics that we feel will appeal to readers of this journal. We hope you enjoy them!


Subject(s)
Antibodies/therapeutic use , Biological Products/therapeutic use , Publishing
9.
Methods Mol Biol ; 1239: 75-103, 2015.
Article in English | MEDLINE | ID: mdl-25408402

ABSTRACT

The ability to edit the genome of cell lines has provided valuable insights into biological processes and the contribution of specific mutations to disease biology. These techniques fall into two categories based on the DNA repair mechanism that is used to incorporate the genetic change. Nuclease-based technologies, such as Zinc-Finger Nucleases, TALENS, and Crispr/Cas9, rely on non-homologous end-joining (NHEJ) and homology directed repair (HDR) to generate a range of genetic modifications. Adeno-Associated Virus (AAV) utilizes homologous recombination to generate precise and predictable genetic modifications directly at the target locus. AAV has been used to create over 500 human isogenic cell lines comprising a wide range of genetic alterations from gene knockouts, insertions of point mutations, indels, epitope tags, and reporter genes. Here we describe the generation and use of AAV gene targeting vectors and viruses to create targeted isogenic cell lines.


Subject(s)
Dependovirus/genetics , Genetic Engineering/methods , Genetic Vectors/genetics , Cell Culture Techniques , Cell Line , Gene Targeting , Genetic Vectors/isolation & purification , Genotype , Homologous Recombination , Humans , Transduction, Genetic
10.
J Biol Chem ; 287(50): 42180-94, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23038259

ABSTRACT

Mutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, however, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on up-regulation of the transcription factor ZEB1 and down-regulation of the miR-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis.


Subject(s)
Epithelial-Mesenchymal Transition , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Isocitrate Dehydrogenase/biosynthesis , MicroRNAs/biosynthesis , Mutation, Missense , Neoplasm Proteins/metabolism , Neoplasms/metabolism , RNA, Neoplasm/biosynthesis , Transcription Factors/metabolism , Amino Acid Substitution , Cell Line, Tumor , Glutarates/metabolism , Homeodomain Proteins/genetics , Humans , Isocitrate Dehydrogenase/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , RNA, Neoplasm/genetics , Transcription Factors/genetics , Up-Regulation/genetics , Zinc Finger E-box-Binding Homeobox 1
11.
J Med Chem ; 54(12): 4034-41, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21526763

ABSTRACT

78 kDa glucose-regulated protein (Grp78) is a heat shock protein (HSP) involved in protein folding that plays a role in cancer cell proliferation. Binding of adenosine-derived inhibitors to Grp78 was characterized by surface plasmon resonance and isothermal titration calorimetry. The most potent compounds were 13 (VER-155008) with K(D) = 80 nM and 14 with K(D) = 60 nM. X-ray crystal structures of Grp78 bound to ATP, ADPnP, and adenosine derivative 10 revealed differences in the binding site between Grp78 and homologous proteins.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Furans/chemical synthesis , Heat-Shock Proteins/antagonists & inhibitors , Purines/chemical synthesis , Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Adenylyl Imidodiphosphate/chemistry , Binding Sites , Calorimetry , Crystallography, X-Ray , Endoplasmic Reticulum Chaperone BiP , Furans/chemistry , HSC70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Heat-Shock Proteins/chemistry , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Purines/chemistry , Stereoisomerism , Structure-Activity Relationship , Surface Plasmon Resonance , Thermodynamics
12.
J Med Chem ; 52(6): 1510-3, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19256508

ABSTRACT

The design and synthesis of novel adenosine-derived inhibitors of HSP70, guided by modeling and X-ray crystallographic structures of these compounds in complex with HSC70/BAG-1, is described. Examples exhibited submicromolar affinity for HSP70, were highly selective over HSP90, and some displayed potency against HCT116 cells. Exposure of compound 12 to HCT116 cells caused significant reduction in cellular levels of Raf-1 and Her2 at concentrations similar to that which caused cell growth arrest.


Subject(s)
Adenosine/pharmacology , Drug Design , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Adenosine/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Fluorescence Polarization Immunoassay , Humans , Molecular Structure
13.
Cancer Res ; 68(8): 2850-60, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18413753

ABSTRACT

We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI(50). This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1alpha, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. NVP-AUY922 has entered phase I clinical trials.


Subject(s)
Cell Division/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/therapeutic use , Neoplasm Metastasis/prevention & control , Neovascularization, Pathologic/prevention & control , Resorcinols/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Carcinoma/drug therapy , Carcinoma/metabolism , Cell Cycle/drug effects , Female , Humans , Isoxazoles/pharmacokinetics , Mice , Mice, Nude , Resorcinols/pharmacokinetics , Transplantation, Heterologous
14.
Bioorg Med Chem Lett ; 17(14): 3880-5, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17570665

ABSTRACT

Virtual screening against a pCDK2/cyclin A crystal structure led to the identification of a potent and novel CDK2 inhibitor, which exhibited an unusual mode of interaction with the kinase binding motif. With the aid of X-ray crystallography and modelling, a medicinal chemistry strategy was implemented to probe the interactions seen in the crystal structure and to establish SAR. A fragment-based approach was also considered but a different, more conventional, binding mode was observed. Compound selectivity against GSK-3beta was improved using a rational design strategy, with crystallographic verification of the CDK2 binding mode.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Crystallography, X-Ray , Drug Design , Protein Kinase Inhibitors/chemistry
15.
Bioorg Med Chem ; 14(14): 4792-802, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16574416

ABSTRACT

Inhibition of the Chk1 kinase by small molecules is of great therapeutic interest for oncology and in understanding the cellular regulation of the G2/M checkpoint. We report how computational docking of a large electronic catalogue of compounds to an X-ray structure of the Chk1 ATP-binding site allowed prioritisation of a small subset of these compounds for assay. This led to the discovery of 10 novel Chk1 inhibitors, distributed among nine new and clearly different chemical scaffolds. Several of these scaffolds have promising lead-like properties. All these ligands act by competitive binding to the targeted ATP site. The crystal structures of four of these compounds bound to this site are presented, and reasonable modelled docking modes are suggested for the 5 other scaffolds. This structural context is used to assess the potential of these scaffolds for further medicinal chemistry efforts, suggesting that several of them could be elaborated to make additional interactions with the buried part of the ATP site. Some unusual interactions with the conserved kinase backbone motif are pointed out. The ligand-binding modes are also used to discuss their medicinal chemistry potential with respect to undesirable chemical functionalities, whether these functionalities bind directly to the protein or not. Overall, this work illustrates how virtual screening can identify a diverse set of ligands which bind to the targeted site. The structural models for these ligands in the Chk1 ATP-binding site will facilitate further medicinal chemistry efforts targeting this kinase.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Binding, Competitive , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , In Vitro Techniques , Ligands , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/metabolism , Protein Kinases/chemistry , User-Computer Interface
16.
Bioorg Med Chem Lett ; 16(5): 1353-7, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16325401

ABSTRACT

Crystallographic and modelling data, in conjunction with a medicinal chemistry template-hopping approach, led to the identification of a series of novel and potent inhibitors of human cyclin-dependent kinase 2 (CDK2), with selectivity over glycogen synthase kinase-3beta (GSK-3beta). One example had a CDK2 IC(50) of 120 nM and showed selectivity over GSK-3beta of 167-fold.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Triazoles/chemistry , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Humans , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Structure-Activity Relationship
17.
Bioorg Med Chem ; 14(6): 1792-804, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16289938

ABSTRACT

Inhibition of the Chk1 kinase by small molecules binding to its active site is a strategy of great therapeutic interest for oncology. We report how computational modelling predicted the binding mode of ligands of special interest to the Chk1 ATP site, for representatives of an indazole series and debromohymenialdisine. These binding modes were subsequently confirmed by X-ray crystallography. The binding mode of a potent indazole derivative involves non-conventional C-H...O and N-H...pi-aromatic interactions with the protein. These interactions are formed in a buried pocket at the periphery of the ATP-binding site, the importance of which has previously been overlooked for ligand design against Chk1. It is demonstrated that filling this pocket can confer ligands with dramatically enhanced affinity for Chk1. Structural arguments in conjunction with assay data explain why targeting this pocket is also advantageous for selective binding to Chk1. Structural overlays of known inhibitors complexed with Chk1 show that only the indazole series utilizes the pocket of interest. Therefore, the analysis presented here should prove helpful in guiding future structure-based ligand design efforts against Chk1.


Subject(s)
Azepines/chemistry , Computer Simulation , Drug Design , Enzyme Inhibitors/chemistry , Indazoles/chemistry , Protein Kinases/chemistry , Pyrroles/chemistry , Adenosine Triphosphate/metabolism , Azepines/metabolism , Binding Sites , Checkpoint Kinase 1 , Crystallography, X-Ray , Humans , Indazoles/metabolism , Ligands , Models, Molecular , Protein Binding/drug effects , Protein Kinases/drug effects , Pyrroles/metabolism , Structure-Activity Relationship
18.
Genetics ; 171(4): 1643-54, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16085697

ABSTRACT

The frizzled (fz) gene in Drosophila controls two distinct signaling pathways: it directs the planar cell polarization (PCP) of epithelia and it regulates cell fate decisions through Armadillo (Arm) by acting as a receptor for the Wnt protein Wingless (Wg). With the exception of dishevelled (dsh), the genes functioning in these two pathways are distinct. We have taken a genetic approach, based on a series of new and existing fz alleles, for identifying individual amino acids required for PCP or Arm signaling. For each allele, we have attempted to quantify the strength of signaling by phenotypic measurements. For PCP signaling, the defect was measured by counting the number of cells secreting multiple hairs in the wing. We then examined each allele for its ability to participate in Arm signaling by the rescue of fz mutant embryos with maternally provided fz function. For both PCP and Arm signaling we observed a broad range of phenotypes, but for every allele there is a strong correlation between its phenotypic strength in each pathway. Therefore, even though the PCP and Arm signaling pathways are genetically distinct, the set of signaling-defective fz alleles affected both pathways to a similar extent. This suggests that fz controls these two different signaling activities by a common mechanism. In addition, this screen yielded a set of missense mutations that identify amino acids specifically required for fz signaling function.


Subject(s)
Armadillo Domain Proteins/metabolism , Cell Polarity/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Phenotype , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Blotting, Western , Cell Polarity/physiology , DNA Primers , Molecular Sequence Data , Protein Conformation , Proto-Oncogene Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Signal Transduction/physiology , Wnt1 Protein
19.
J Med Chem ; 48(13): 4332-45, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-15974586

ABSTRACT

We report the discovery, synthesis, and crystallographic binding mode of novel furanopyrimidine and pyrrolopyrimidine inhibitors of the Chk1 kinase, an oncology target. These inhibitors are synthetically tractable and inhibit Chk1 by competing for its ATP site. A chronological account allows an objective comparison of modeled compound docking modes to the subsequently obtained crystal structures. The comparison provides insights regarding the interpretation of modeling results, in relationship to the multiple reasonable docking modes which may be obtained in a kinase-ATP site. The crystal structures were used to guide medicinal chemistry efforts. This led to a thorough characterization of a pair of ligand-protein complexes which differ by a single hydrogen bond. An analysis indicates that this hydrogen bond is expected to contribute a fraction of the 10-fold change in binding affinity, adding a valuable observation to the debate about the energetic role of hydrogen bonding in molecular recognition.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Adenosine Triphosphate/metabolism , Binding Sites , Binding, Competitive , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Humans , Hydrogen Bonding , Kinetics , Ligands , Models, Molecular , Molecular Conformation , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Pyrimidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...