Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Proc ; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo): S79, 2014.
Article in English | MEDLINE | ID: mdl-25519407

ABSTRACT

In the last few years, a bewildering variety of methods/software packages that use linear mixed models to account for sample relatedness on the basis of genome-wide genomic information have been proposed. We compared these approaches as implemented in the programs EMMAX, FaST-LMM, Gemma, and GenABEL (FASTA/GRAMMAR-Gamma) on the Genetic Analysis Workshop 18 data. All methods performed quite similarly and were successful in reducing the genomic control inflation factor to reasonable levels, particularly when the mean values of the observations were used, although more variation was observed when data from each time point were used individually. From a practical point of view, we conclude that it makes little difference to the results which method/software package is used, and the user can make the choice of package on the basis of personal taste or computational speed/convenience.

2.
BMC Proc ; 5 Suppl 9: S98, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22373331

ABSTRACT

We present a new statistical method to identify genes in which one or more variants influence quantitative traits. We use the Genetic Analysis Workshop 17 (GAW17) data set of unrelated individuals as a test of the method on the raw GAW17 phenotypes and on residuals after fitting linear models to individual-based covariates. By performing appropriate randomization tests, we found many significant results for a proportion of the genes that contain variants that directly contribute to disease but that have an increased type I error for analyses of raw phenotypes. Power calculations show that our methods have the ability to reliably identify a subset of the loci contributing to disease. When we applied our method to derived phenotypes, we removed many false positives, giving appropriate type I error rates at little cost to power. The correlation between genome-wide heterozygosity and the value of the trait Q1 appears to drive much of the type I error in this data set.

SELECTION OF CITATIONS
SEARCH DETAIL
...