Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 2785, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31239445

ABSTRACT

Entanglement is the powerful and enigmatic resource central to quantum information processing, which promises capabilities in computing, simulation, secure communication, and metrology beyond what is possible for classical devices. Exactly quantifying the entanglement of an unknown system requires completely determining its quantum state, a task which demands an intractable number of measurements even for modestly-sized systems. Here we demonstrate a method for rigorously quantifying high-dimensional entanglement from extremely limited data. We improve an entropic, quantitative entanglement witness to operate directly on compressed experimental data acquired via an adaptive, multilevel sampling procedure. Only 6,456 measurements are needed to certify an entanglement-of-formation of 7.11 ± .04 ebits shared by two spatially-entangled photons. With a Hilbert space exceeding 68 billion dimensions, we need 20-million-times fewer measurements than the uncompressed approach and 1018-times fewer measurements than tomography. Our technique offers a universal method for quantifying entanglement in any large quantum system shared by two parties.

2.
J Vis Exp ; (122)2017 04 04.
Article in English | MEDLINE | ID: mdl-28447975

ABSTRACT

Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.


Subject(s)
Equipment Design , Interferometry , Photons , Quantum Theory , Silicon , Equipment Failure Analysis
3.
Appl Opt ; 55(19): 5198-202, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27409210

ABSTRACT

Spectrometry requires high spectral resolution and high photometric precision while also balancing cost and complexity. We address these requirements by employing a compressive-sensing camera capable of improving signal acquisition speed and sensitivity in limited signal scenarios. In particular, we implement a fast single pixel spectrophotometer with no moving parts and measure absorption and emission spectra comparable with commercial products. Our method utilizes Hadamard matrices to sample the spectra and then minimizes the total variation of the signal. The experimental setup includes standard optics and a grating, a low-cost digital micromirror device, and an intensity detector. The resulting spectrometer produces a 512 pixel spectrum with low mean-squared error and up to a 90% reduction in data acquisition time when compared with a standard spectrophotometer.

4.
Opt Express ; 22(16): 18870-80, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25320973

ABSTRACT

We demonstrate a wavefront sensor that unites weak measurement and the compressive-sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field's transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the wavefront's real and imaginary components. Compressive-sensing optimization techniques can then recover the wavefront. We acquire high quality, 256 × 256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity.

5.
Phys Rev Lett ; 112(25): 253602, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-25014815

ABSTRACT

The more information a measurement provides about a quantum system's position statistics, the less information a subsequent measurement can provide about the system's momentum statistics. This information trade-off is embodied in the entropic formulation of the uncertainty principle. Traditionally, uncertainly relations correspond to resolution limits; increasing a detector's position sensitivity decreases its momentum sensitivity and vice versa. However, this is not required in general; for example, position information can instead be extracted at the cost of noise in momentum. Using random, partial projections in position followed by strong measurements in momentum, we efficiently determine the transverse-position and transverse-momentum distributions of an unknown optical field with a single set of measurements. The momentum distribution is directly imaged, while the position distribution is recovered using compressive sensing. At no point do we violate uncertainty relations; rather, we economize the use of information we obtain.

6.
Opt Express ; 21(20): 23822-37, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104293

ABSTRACT

We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

7.
Opt Lett ; 38(16): 2949-52, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-24104618

ABSTRACT

In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400 fm/s and show our estimator to be efficient by reaching its Cramér-Rao bound.

8.
Phys Rev Lett ; 110(17): 170405, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679690

ABSTRACT

We present a measurement protocol for discriminating between two different quantum states of a qubit with high fidelity. The protocol, called null value, is comprised of a projective measurement performed on the system with a small probability (also known as partial collapse), followed by a tuned postselection. We report on an optical experimental implementation of the scheme. We show that our protocol leads to an amplified signal-to-noise ratio (as compared with a straightforward strong measurement) when discerning between the two quantum states.

9.
Phys Rev Lett ; 110(13): 130407, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581303

ABSTRACT

In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to demonstrate the EPR paradox. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to show that the down-converted photon pairs also exhibit symmetric EPR steering.

10.
Phys Rev Lett ; 108(14): 143603, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22540794

ABSTRACT

High-dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high-dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric down-conversion state by measuring in up to 576 dimensions per detector. We achieve a channel capacity over 7 bits/photon in either the position or momentum basis. Furthermore, we provide a correspondingly high-dimensional separability bound that suggests that the channel performance cannot be replicated classically.

SELECTION OF CITATIONS
SEARCH DETAIL
...