Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 283(4): F817-25, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12217874

ABSTRACT

Specialized transporter proteins that are the products of two closely related genes, UT-A (Slc14a2) and UT-B (Slc14a1), modulate the movement of urea across cell membranes. The purpose of this study was to characterize the mouse variants of two major products of the UT-A gene, UT-A1 and UT-A2. Screening a mouse kidney inner medulla cDNA library yielded 4,047- and 2,876-bp cDNAs, the mouse homologues of UT-A1 and UT-A2. Northern blot analysis showed high levels of UT-A mRNAs in kidney medulla. UT-A transcripts were also present in testes, heart, brain, and liver. Immunoblots with an antiserum raised to the 19 COOH-terminal amino acids of rat UT-A1 (L194) identified immunoreactive proteins in kidney, testes, heart, brain, and liver and showed a complex pattern of differential expression. Relative to other tissues, kidney and brain had the highest levels of UT-A protein expression. In kidney sections, immunostaining with L194 revealed immunoreactive proteins in type 1 (short) and type 3 (long) thin descending limbs of the loop of Henle and in the middle and terminal inner medullary collecting ducts. Expression in Xenopus laevis oocytes showed that, characteristic of UT-A family members, the cDNAs encoded phloretin-inhibitable urea transporters. Acute application of PKA agonists (cAMP/forskolin/IBMX) caused a significant increase in UT-A1- and UT-A3-, but not UT-A2-mediated, urea transport.


Subject(s)
Carrier Proteins/genetics , Kidney Medulla/chemistry , Membrane Glycoproteins/genetics , Membrane Transport Proteins , Urea/metabolism , Amino Acid Sequence , Animals , Biological Transport, Active , Blotting, Northern , Blotting, Western , Carrier Proteins/chemistry , Carrier Proteins/physiology , Cloning, Molecular , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Primers , DNA, Complementary/genetics , Immunohistochemistry , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/physiology , Mice , Molecular Sequence Data , Oocytes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Distribution , Xenopus , Urea Transporters
2.
Am J Physiol Renal Physiol ; 282(4): F630-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11880324

ABSTRACT

The movement of urea across plasma membranes is modulated by facilitated urea transporter proteins. These proteins are the products of two closely related genes, termed UT-A (Slc14a2) and UT-B (Slc14a1). By genomic library screening and P1 artificial chromosome "shotgun" sequencing, we have determined the structure of the mouse UT-A gene. The gene is >300 kb in length, contains 24 exons, and has 2 distinct promoters. Flanking the 5'-region of the gene is the UT-Aalpha promoter that regulates transcription of UT-A1 and UT-A3. The second promoter, termed UT-Abeta, is present in intron 13 and regulates transcription of UT-A2. cAMP agonists (100 microM dibutryl cAMP, 25 microM forskolin, 0.5 mM IBMX) increased the activity of a 2.2-kb UT-Aalpha promoter construct 6.2-fold [from 0.026 +/- 0.003 to 0.160 +/- 0.004, relative light units (RLU)/microg protein] and a 2.4-kb UT-Abeta promoter construct 9.5-fold (from 0.020 +/- 0.002 to 0.190 +/- 0.043 RLU/microg protein) above that in untreated controls. Interestingly, only the UT-Abeta promoter contained consensus sequences for CREs and deletion of these elements abolished cAMP sensitivity. Increasing the tonicity of culture medium from 300 to 600 mosmol/kg H(2)O with NaCl caused a significant increase (from 0.060 +/- 0.004 to 0.095 +/- 0.010 RLU/microg protein) in UT-Aalpha promoter activity but had no effect on the UT-Abeta promoter. A tonicity-responsive enhancer was identified in UT-Aalpha and is suggested to be responsible for mediating this effect. Levels of UT-A2 and UT-A3 mRNA were increased in thirsted mice compared with control animals, indicating that the activities of both promoters are likely to be elevated during prolonged antidiuresis.


Subject(s)
Carrier Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Transport Proteins , Animals , Base Sequence , Blotting, Northern , Carrier Proteins/chemistry , Cells, Cultured , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Exons/genetics , Gene Expression Regulation/physiology , Introns/genetics , Membrane Glycoproteins/chemistry , Mice , Mice, Knockout , Molecular Sequence Data , Plasmids/genetics , Promoter Regions, Genetic , RNA, Messenger/biosynthesis , Transfection , Water Deprivation/physiology , Urea Transporters
3.
Am J Physiol Cell Physiol ; 279(5): C1425-31, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11029290

ABSTRACT

Urea movement across plasma membranes is modulated by specialized transporter proteins that are products of two genes, termed UT-A and UT-B. These proteins play key roles in the urinary concentrating mechanism and fluid homeostasis. We have isolated and characterized a 1.4-kb cDNA from testes encoding a new isoform (UT-A5) belonging to the UT-A transporter family. For comparison, we also isolated a 2. 0-kb cDNA from mouse kidney inner medulla encoding the mouse UT-A3 homologue. The UT-A5 cDNA has a putative open reading frame encoding a 323-amino acid protein, making UT-A5 the smallest UT-A family member in terms of molecular size. Its putative topology is of particular interest, because it calls into question earlier models of UT-A transporter structure. Expression of UT-A5 cRNA in Xenopus oocytes mediates phloretin-inhibitable urea uptake and does not translocate water. The distribution of UT-A5 mRNA is restricted to the peritubular myoid cells forming the outermost layer of the seminiferous tubules within the testes and is not detected in kidney. UT-A5 mRNA levels are coordinated with the stage of testes development and increase 15 days postpartum, commensurate with the start of seminiferous tubule fluid movement.


Subject(s)
Membrane Transport Proteins , Testis/metabolism , Amino Acid Sequence/genetics , Animals , Base Sequence/genetics , Blotting, Northern , Carrier Proteins/metabolism , Carrier Proteins/pharmacology , DNA, Complementary/genetics , Gene Amplification , Kidney Medulla/metabolism , Male , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/pharmacology , Mice , Mice, Inbred Strains , Molecular Sequence Data , Permeability , RNA, Messenger/metabolism , Rats , Sequence Homology, Amino Acid , Tissue Distribution , Water/metabolism , Urea Transporters
5.
J Physiol ; 425: 407-27, 1990 Jun.
Article in English | MEDLINE | ID: mdl-2213584

ABSTRACT

1. In order to distinguish between models of anion secretion, the effects of transport inhibitors on saliva flow rate and electrolyte composition were studied during the plateau phase of secretion in rabbit mandibular salivary glands. 2. Bumetanide, an inhibitor of Na+,K+,2Cl- co-transport, inhibited flow rate (by 60%) and reduced Cl- concentration. K+ and HCO3- concentrations were increased. Forskolin, an adenylate cyclase activator which inhibits ductal transport, did not significantly affect this pattern of changes. 3. Amiloride, used at concentrations that would inhibit Na(+)-H+ exchange, inhibited flow rate (by 30%). Cl- concentration was initially increased before subsequently decreasing at the same time as HCO3- concentration increased. These concentration changes can probably be attributed to ductal transport. When amiloride was applied to glands perfused with nominally HCO3- -free solutions, inhibition of flow rate was rapid and almost complete. 4. When amiloride and bumetanide were both present in the perfusate, flow rate was inhibited by 92%. The pattern of electrolyte changes was not significantly different from that observed in the presence of bumetanide alone. 5. Inhibition of K+ channel activity using Ba2+ also inhibited flow rate. Cl- concentration was increased as was K+ concentration. HCO3- concentration was not increased. 6. The anion exchange inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) had no effect on either flow rate or electrolyte concentration. It did, however, elicit secretion in the absence of acetylcholine. 7. The data suggest that Na(+)-H+ and Cl- -HCO3- exchangers are unlikely to be involved in fluid and electrolyte secretion in these glands as suggested by some authors. Most of the data can be explained by postulating the existence of non-specific anion channels in the apical membranes of the acinar cells.


Subject(s)
Amiloride/pharmacology , Barium/pharmacology , Bumetanide/pharmacology , Electrolytes/metabolism , Salivary Glands/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid , 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/analogs & derivatives , 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/pharmacology , Acetylcholine/metabolism , Animals , Bicarbonates/metabolism , Chlorides/metabolism , Colforsin/pharmacology , Hydrogen-Ion Concentration , Ion Exchange , Male , Rabbits , Salivary Glands/drug effects , Sodium/metabolism
6.
J Physiol ; 406: 411-30, 1988 Dec.
Article in English | MEDLINE | ID: mdl-3254419

ABSTRACT

1. The major purpose of this study was to investigate cellular regulation of the ductal transport processes in salivary glands which act to modify the electrolyte composition of primary saliva and cause it to become hypotonic. This was achieved using an isolated mandibular gland preparation by observing the effect of different stimuli on the electrolyte composition of saliva secreted at the same flow rate, on the assumption that these stimuli do not influence primary saliva composition. The effects of the same stimuli on the volume of primary fluid secretion and on protein secretion were also observed. Proteins were measured in total and as individual components after their separation by high-performance liquid chromatography. 2. Acetylcholine was used as a 'Ca2+-mobilizing' agonist (i.e. one which both elevates intracellular Ca2+ concentration and activates protein kinase C). Isoprenaline was initially used to elevate intracellular cyclic AMP concentration but was subsequently abandoned in favour of forskolin. 3. Acetylcholine was a very potent stimulus of primary fluid secretion. By contrast, isoprenaline and forskolin were essentially without effect, even when superimposed on acetylcholine stimulation. 4. As judged by saliva electrolyte composition, increasing the concentration of acetylcholine enhanced ductal absorption of Na+ and Cl- and secretion of K+ (and presumably HCO3-). Forskolin had the opposite effect: when superimposed on submaximal acetylcholine stimulation it caused saliva concentrations of Na+ and Cl- to remain high and K+ low (i.e. it inhibited ductal transport processes). The inhibitory effect of forskolin on ductal transport could be overcome by increasing the concentration of acetylcholine, and vice versa. 5. Acetylcholine, isoprenaline and forskolin each increased salivary protein secretion, although the kinetics of secretion differed. The spectrum of proteins secreted in response to the three stimuli was the same. The relative proportions of the individual proteins was influenced by the strength of stimulation (i.e. the proportions at high total protein output differed from those at low total protein output) but not apparently by the nature of the stimulus. 6. Thus, the three major secretory processes in the rabbit mandibular salivary gland respond differently to the two major signal transduction mechanisms. For primary fluid secretion, Ca2+ is stimulatory and cyclic AMP almost without effect; for ductal transport, Ca2+ is stimulatory and cyclic AMP inhibitory; and for protein secretion both Ca2+ and cyclic AMP are stimulatory.


Subject(s)
Acetylcholine/pharmacology , Colforsin/pharmacology , Electrolytes/metabolism , Isoproterenol/pharmacology , Saliva/drug effects , Salivary Proteins and Peptides/metabolism , Animals , Chlorides/metabolism , In Vitro Techniques , Male , Potassium/metabolism , Rabbits , Secretory Rate/drug effects , Sodium/metabolism , Submandibular Gland/metabolism
7.
Pflugers Arch ; 408(3): 209-14, 1987 Mar.
Article in English | MEDLINE | ID: mdl-3575086

ABSTRACT

Previous studies have suggested that the permeability of exocrine glands to non-electrolytes may change according to the nature and intensity of the stimuli evoking secretion. The purpose of this study was to define the nature of these permeability changes using a method that distinguishes diffusion from solvent drag. Isolated rabbit mandibular salivary glands were perfused with solutions containing 14C-labelled non-electrolytes and stimulated with acetylcholine. Diffusive permeability coefficients (P) and solvent-drag filtration coefficients (1-sigma) were estimated from the relationship between salivary non-electrolyte concentration and salivary flow rate. Filtration coefficients for urea, ethanediol, glycerol, erythritol and sucrose increased with acetylcholine concentration while, with the exception of urea, the diffusive permeabilities remained virtually unchanged. The effect of increasing acetylcholine concentration can best be explained by postulating an increase in the effective channel radius of the water secretion pathway from 0.40 nm to 0.45 nm together with a small increase in the fraction of the total water flow passing through larger non-selective pores. Forskolin had little effect on either of the permeability parameters except for a small increase in the diffusive permeability to ethanediol.


Subject(s)
Acetylcholine/pharmacology , Colforsin/pharmacology , Salivary Glands/metabolism , Acetylcholine/metabolism , Animals , In Vitro Techniques , Male , Permeability , Rabbits , Salivary Glands/drug effects , Salivation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...