Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Dev Psychobiol ; 56(3): 435-47, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23532964

ABSTRACT

The etiology of schizophrenia's cognitive symptoms may have its basis in prenatal alterations of glutamate N-methyl-D-aspartate (NMDA) receptor functioning. Therefore, the current study investigated the effects of ketamine (an NMDA receptor blocking drug) on both a conditioned taste aversion (CTA) and latent inhibition (LI; a model of attentional capacity) in rat fetuses. We first sought to determine if a CTA could be diminished by nonreinforced preexposure to a CS in fetal rats (i.e., LI). We injected E18 pregnant Sprague-Dawley rats with 100% allicin (garlic taste) or an equal volume of saline. Some of the pregnant dams also received ketamine (100 mg/kg, i.p.). One day later (E19), the dams received a second injection of the CS, followed by either lithium chloride (the US) or saline. Finally, on E21 pups received oral lavage with allicin and observations of ingestive orofacial motor responses were recorded. When allicin had been paired with LiCl in utero, E21 fetuses exhibited a conditioned suppression of orofacial movements, indicative of an aversion to this taste. Preexposure to the garlic taste on E18 produced a LI of this CTA. Ketamine significantly disrupted the formation of the CTA and had some impact on LI. However, the direct effect of ketamine on LI is less certain since the drug also blocked the original CTA.


Subject(s)
Avoidance Learning/drug effects , Conditioning, Classical/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Inhibition, Psychological , Ketamine/pharmacology , Sulfinic Acids/pharmacology , Animals , Avoidance Learning/physiology , Conditioning, Classical/physiology , Disulfides , Female , Pregnancy , Rats , Rats, Sprague-Dawley
3.
Pharmacol Biochem Behav ; 106: 16-26, 2013 May.
Article in English | MEDLINE | ID: mdl-23474371

ABSTRACT

Elevation of brain magnesium enhances synaptic plasticity and extinction of conditioned fear memories. This experiment examined the generalizability of this phenomenon by studying the effects of a novel magnesium compound, magnesium-L-threonate (MgT), on conditioned taste aversion (CTA) extinction and spontaneous recovery (SR). Adult male Sprague-Dawley rats were maintained on a 23-hour water deprivation cycle and acquired a CTA following the taste of a CS [0.3% saccharin+16 mg/ml MgT (SAC+MgT)] paired with a US [81 mg/kg (i.p.) lithium chloride (LiCl)]. Following CTA acquisition, rats drank a water+MgT solution for up to 1 hour/day over the next 31 days. For 14 additional days, some animals continued water+MgT treatment, but others drank water only to allow MgT to be eliminated from the body. We then employed 2 different extinction paradigms: (1) CS-Only (CSO), in which SAC was presented, every-other day, or (2) Explicitly Unpaired (EU), in which both SAC and LiCl were presented, but on alternate days. EU extinction procedures have been shown to speed CTA extinction and reduce spontaneous recovery of the aversion. Throughout extinction, half of the rats in each group continued to drink MgT (now in SAC or supplemental water+MgT solution), whereas the other half drank SAC only/water only until SAC drinking reached ≥90% of baseline (asymptotic extinction). Rats receiving MgT just before/during extinction drank less SAC on the first day of extinction suggesting that they had retained a stronger CTA. MgT enhanced the rate of extinction. Furthermore, the MgT-treated rats showed a relatively modest SR of the CTA 30 days later - indicating that the extinction procedure was more effective for these animals. Our data suggest that long-term dietary MgT may enhance the consolidation/retention of a CTA, speed extinction, and inhibit SR of this learned aversion.


Subject(s)
Avoidance Learning/drug effects , Butyrates/pharmacology , Diet , Taste/drug effects , Animals , Butyrates/administration & dosage , Male , Rats , Rats, Sprague-Dawley
4.
Brain Res ; 1493: 27-39, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23183042

ABSTRACT

Due to its relevance to clinical practice, extinction of learned fears has been a major focus of recent research. However, less is known about the means by which conditioned fears re-emerge (i.e., spontaneously recover) as time passes or contexts change following extinction. The periaqueductal gray represents the final common pathway mediating defensive reactions to fear and we have reported previously that the dorsolateral PAG (dlPAG) exhibits a small but reliable increase in neural activity (as measured by c-fos protein immunoreactivity) when spontaneous recovery (SR) of a conditioned taste aversion (CTA) is reduced. Here we extend these correlational studies to determine if inducing dlPAG c-fos expression through electrical brain stimulation could cause a reduction in SR of a CTA. Male Sprague-Dawley rats acquired a strong aversion to saccharin (conditioned stimulus; CS) and then underwent CTA extinction through multiple non-reinforced exposures to the CS. Following a 30-day latency period after asymptotic extinction was achieved; rats either received stimulation of the dorsal PAG (dPAG) or stimulation of closely adjacent structures. Sixty minutes following the stimulation, rats were again presented with the saccharin solution as we tested for SR of the CTA. The brain stimulation evoked c-fos expression around the tip of the electrodes. However, stimulation of the dPAG failed to reduce SR of the previously extinguished CTA. In fact, dPAG stimulation caused rats to significantly suppress their saccharin drinking (relative to controls) - indicating an enhanced SR. These data refute a cause-and-effect relationship between enhanced dPAG c-fos expression and a reduction in SR. However, they highlight a role for the dPAG in modulating SR of extinguished CTAs.


Subject(s)
Avoidance Learning/physiology , Conditioning, Psychological/physiology , Extinction, Psychological/physiology , Periaqueductal Gray/physiology , Taste/physiology , Animals , Behavior, Animal/physiology , Electric Stimulation , Electrodes, Implanted , Male , Rats , Rats, Sprague-Dawley , Saccharin
5.
Pediatr Nephrol ; 25(12): 2449-57, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20798958

ABSTRACT

Hypertension is a well-recognized complication of autosomal recessive polycystic kidney disease (ARPKD). The renin-angiotensin system (RAS) is a key regulator of blood pressure; however, data on the RAS in ARPKD are limited and conflicting, showing both up- and down-regulation. In the current study, we characterized intrarenal and systemic RAS activation in relationship to hypertension and progressive cystic kidney disease in the ARPKD orthologous polycystic kidney (PCK) rat. Clinical and histological measures of kidney disease, kidney RAS gene expression by quantitative real-time PCR, angiotensin II (Ang II) immunohistochemistry, and systemic Ang I and II levels were assessed in 2-, 4-, and 6-month-old cystic PCK and age-matched normal rats. PCK rats developed hypertension and progressive cystic kidney disease without significant worsening of renal function or relative kidney size. Intrarenal renin, ACE and Ang II expression was increased significantly in cystic kidneys; angiotensinogen and Ang II Type I receptor were unchanged. Systemic Ang I and II levels did not differ. This study demonstrates that intrarenal, but not systemic, RAS activation is a prominent feature of ARPKD. These findings help reconcile previous conflicting reports and suggest that intrarenal renin and ACE gene upregulation may represent a novel mechanism for hypertension development or exacerbation in ARPKD.


Subject(s)
Blood Pressure , Hypertension/etiology , Kidney/metabolism , Polycystic Kidney, Autosomal Recessive/complications , Renin-Angiotensin System , Aging , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensinogen/metabolism , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Blood Pressure/genetics , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Hypertension/drug therapy , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Kidney/drug effects , Kidney/physiopathology , Male , Mutation , Peptidyl-Dipeptidase A/metabolism , Polycystic Kidney, Autosomal Recessive/genetics , Polycystic Kidney, Autosomal Recessive/metabolism , Polycystic Kidney, Autosomal Recessive/physiopathology , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/metabolism , Receptors, Cell Surface , Renin/metabolism , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/genetics , Time Factors
6.
J Pediatr Gastroenterol Nutr ; 50(6): 639-44, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20400910

ABSTRACT

OBJECTIVES: Congenital hepatic fibrosis (CHF) is an important cause of morbidity and mortality in patients with autosomal recessive polycystic kidney disease (ARPKD). The pathogenesis of CHF remains undefined. Several recent studies suggest that the renin-angiotensin system (RAS) is an important mediator of progressive hepatic fibrosis through activation of profibrotic mediators, such as transforming growth factor-beta (TGF-beta). RAS activation has not previously been studied in patients with CHF or in animal models. The aim of the present study was to characterize RAS expression during the course of CHF in the PCK rat. MATERIALS AND METHODS: Studies were conducted in the PCK rat, an orthologous ARPKD/CHF model, and age-matched normal control Sprague-Dawley rats. Expression of the RAS components, renin, angiotensinogen, angiotensin-converting enzyme (ACE), and angiotensin II type 1 receptor (AT1R), as well as the profibrotic mediator TGF-beta, was examined in cystic PCK and control rat livers at 2, 4, and 6 months of age by quantitative real-time polymerase chain reaction (qRT-PCR). Angiotensin II (ANG II) was examined by immunohistochemistry (IHC). Fibrosis was assessed by IHC using reticulin staining and Masson trichrome. Collagen content was determined by hydroxyproline analysis. RESULTS: Progressive fibrosis and increased hepatic collagen content occurred in PCK rats with age. In 4- and 6-month-old PCK rat livers, ACE gene expression was markedly increased, 8- and 17-fold, respectively, compared with age-matched control livers. Expression of the other RAS components, renin, angiotensinogen, and AT1R were not significantly different. IHC demonstrated prominent ANG II protein expression in periportal regions in PCK rats. In contrast, no expression was noted in control livers. TGF-beta expression was also increased in PCK rat livers with progressive disease. CONCLUSIONS: The present study demonstrates, for the first time, RAS upregulation in an orthologous rat ARPKD/CHF model. Increases in ACE and ANG II, as well as the downstream target, the profibrotic mediator TGF-beta, suggest that RAS activation may be an important mediator of CHF disease progression. The findings also suggest that treatment with RAS inhibitors, specifically ACE inhibitors or AT1R blockers, could be therapeutic in slowing disease progression in CHF.


Subject(s)
Angiotensin II/metabolism , Collagen/metabolism , Liver Cirrhosis/metabolism , Liver/metabolism , Peptidyl-Dipeptidase A/metabolism , Polycystic Kidney, Autosomal Recessive/metabolism , Renin-Angiotensin System/physiology , Animals , Disease Models, Animal , Disease Progression , Gene Expression , Liver/pathology , Liver Cirrhosis/congenital , Male , Peptidyl-Dipeptidase A/genetics , Polycystic Kidney, Autosomal Recessive/pathology , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...