Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 26(3): 378-392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429475

ABSTRACT

The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions, ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis, where a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodelling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of the ER and the role of individual ER-phagy receptors is limited. Here we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodelling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodelling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both the magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodelling and versatile genetic toolkit provide a quantitative framework for understanding the contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.


Subject(s)
Proteome , Proteomics , Humans , Endoplasmic Reticulum/metabolism , Autophagy/physiology , Endoplasmic Reticulum Stress , Carrier Proteins/metabolism , Neurogenesis
2.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37425907

ABSTRACT

The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis: a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodeling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of ER and the role of individual ER-phagy receptors is limited. Here, we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodeling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodeling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodeling and versatile genetic toolkit provides a quantitative framework for understanding contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.

3.
Dev Cell ; 58(14): 1219-1220, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37490852

ABSTRACT

In a recent issue of Nature, González et al. and Foronda et al. examine the role of ubiquitin in autophagic capture of ER by ER-phagy. They propose that ubiquitylation of ER-phagy receptor FAM134B and ER-shaping protein ARL61PL1 promotes receptor clustering in nanodomains, which generates membrane curvature, facilitating autophagosomal capture.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Endoplasmic Reticulum/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ubiquitin/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Autophagy , Endoplasmic Reticulum Stress
4.
Curr Opin Physiol ; 292022 Oct.
Article in English | MEDLINE | ID: mdl-36713230

ABSTRACT

Lysosomes are subjected to physiological and patho-physiological insults over the course of their life cycle and are accordingly repaired or recycled. Lysophagy, the selective degradation of lysosomes via autophagy, occurs upon unrepairable lysosomal membrane rupture; galectins bind to glycosylated macromolecules in the lysosome lumen, orchestrating a series of cellular responses to promote autophagic recycling of damaged lysosomes and transcriptional upregulation of lysosomal genes. Damaged lysosomes are ubiquitylated, resulting in the recruitment of ubiquitin-binding autophagy receptors, which promote assembly of an autophagosome around damaged lysosomes for delivery to healthy lysosomes for degradation. Here, we review the current state of our understanding of mechanisms used to mark and eliminate damaged lysosomes, and discuss the complexities of galectin function and ubiquitin-chain linkage types. Finally, we discuss the limitations of available data and challenges with the goal of understanding the mechanistic basis of key steps in lysophagic flux.

5.
Elife ; 102021 09 29.
Article in English | MEDLINE | ID: mdl-34585663

ABSTRACT

Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their interrelationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosome-associated proteome remodeling during lysophagy. Among the proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both HeLa cells and induced neurons (iNeurons). While the related receptor Optineurin (OPTN) can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.


Subject(s)
Autophagy/genetics , Lysosomes/pathology , Macroautophagy/physiology , Ubiquitin/metabolism , Humans , Protein Binding , Proteomics
6.
J Cell Sci ; 133(14)2020 07 24.
Article in English | MEDLINE | ID: mdl-32616562

ABSTRACT

Secretory cargo is recognized, concentrated and trafficked from endoplasmic reticulum (ER) exit sites (ERES) to the Golgi. Cargo export from the ER begins when a series of highly conserved COPII coat proteins accumulate at the ER and regulate the formation of cargo-loaded COPII vesicles. In animal cells, capturing live de novo cargo trafficking past this point is challenging; it has been difficult to discriminate whether cargo is trafficked to the Golgi in a COPII-coated vesicle. Here, we describe a recently developed live-cell cargo export system that can be synchronously released from ERES to illustrate de novo trafficking in animal cells. We found that components of the COPII coat remain associated with the ERES while cargo is extruded into COPII-uncoated, non-ER associated, Rab1 (herein referring to Rab1a or Rab1b)-dependent carriers. Our data suggest that, in animal cells, COPII coat components remain stably associated with the ER at exit sites to generate a specialized compartment, but once cargo is sorted and organized, Rab1 labels these export carriers and facilitates efficient forward trafficking.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Animals , Biological Transport , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport
7.
Cell ; 175(1): 254-265.e14, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30220460

ABSTRACT

Endoplasmic reticulum (ER) membrane contact sites (MCSs) mark positions where endosomes undergo fission for cargo sorting. To define the role of ER at this unique MCS, we targeted a promiscuous biotin ligase to cargo-sorting domains on endosome buds. This strategy identified the ER membrane protein TMCC1, a member of a conserved protein family. TMCC1 concentrates at the ER-endosome MCSs that are spatially and temporally linked to endosome fission. When TMCC1 is depleted, endosome morphology is normal, buds still form, but ER-associated bud fission and subsequent cargo sorting to the Golgi are impaired. We find that the endosome-localized actin regulator Coronin 1C is required for ER-associated fission of actin-dependent cargo-sorting domains. Coronin 1C is recruited to endosome buds independently of TMCC1, while TMCC1/ER recruitment requires Coronin 1C. This link between TMCC1 and Coronin 1C suggests that the timing of TMCC1-dependent ER recruitment is tightly regulated to occur after cargo has been properly sequestered into the bud.


Subject(s)
Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Membrane Proteins/metabolism , Animals , COS Cells , Calcium Channels , Chlorocebus aethiops , Endoplasmic Reticulum/physiology , Endosomes/physiology , Golgi Apparatus/metabolism , HeLa Cells , Humans , Microfilament Proteins/physiology , Microtubules/metabolism , Protein Transport/physiology
8.
Cell ; 171(5): 1224-1224.e1, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149609

ABSTRACT

The endoplasmic reticulum (ER) consists of the nuclear envelope and a reticulated interconnected network of tubules and sheets. ER sheets are studded with ribosomes and provide the entryway for proteins into the secretory pathway. ER tubules move dynamically on microtubules and form membrane contact sites with other organelles, where membranes are tethered, but not fused. This Snapshot reviews key biological processes that take place at ER contact sites with the Golgi, endosomes, and mitochondria.


Subject(s)
Endoplasmic Reticulum/physiology , Animals , Biological Transport , Calcium/metabolism , Humans , Lipid Metabolism , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...