Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 107(2): 695-710, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709031

ABSTRACT

Our objective was to determine the effects of dipotassium phosphate (DKP) addition, heat treatments (no heat, high temperature, short time [HTST]: 72°C for 15 s, and direct steam injection UHT: 142°C for 2.3 s), and storage time on the soluble protein composition and mineral (P, Ca, K) concentration of the aqueous phase around casein micelles in 7.5% milk protein-based beverages made with liquid skim milk protein concentrate (MPC) and micellar casein concentrate (MCC). Milk protein concentrate was produced using a spiral wound polymeric membrane, and MCC was produced using a 0.1-µm ceramic membrane by filtration at 50°C. Two DKP concentrations were used (0% and 0.15% wt/wt) within each of the 3 heat treatments. All beverages had no other additives and ran through heat treatment without coagulation. Ultracentrifugation (2-h run at 4°C) supernatants of the beverages were collected at 1, 5, 8, 12, and 15-d storage at 4°C. Phosphorus, Ca, and K concentrations in the beverages and supernatants were measured using inductively coupled plasma spectrometry. Protein composition of supernatants was measured using Kjeldahl and sodium dodecyl sulfate-PAGE. Micellar casein concentrate and MPC beverages with 0.15% DKP had higher concentrations of supernatant protein, Ca, and P than beverages without DKP. Protein, Ca, and P concentrations were higher in MCC supernatant than in MPC supernatant when DKP was added, and these concentrations increased over storage time, especially when lower heat treatments (HTST or no heat treatment) had been applied. Dipotassium phosphate addition caused the dissociation of αS-, ß-, and κ-casein, and casein proteolysis products out of the casein micelles, and DKP addition explained over 70% of the increase in supernatant protein, P, and Ca concentrations. Dipotassium phosphate could be removed from 7.5% of protein beverages made with fresh liquid MCC and MPC (containing a residual lactose concentration of 0.6% to 0.7% and the proportional amount of soluble milk minerals), as these beverages maintain heat-processing stability without DKP addition.


Subject(s)
Caseins , Milk Proteins , Potassium Compounds , Animals , Milk Proteins/analysis , Caseins/chemistry , Micelles , Hot Temperature , Minerals , Beverages/analysis , Phosphates
2.
J Dairy Sci ; 106(6): 3884-3899, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105877

ABSTRACT

Our objective was to determine the effect of addition of dipotassium phosphate (DKP) at 3 different thermal treatments on color, viscosity, and sensory properties of 7.5% milk protein-based beverages during 15 d of storage at 4°C. Micellar casein concentrate (MCC) and milk protein concentrate (MPC) containing about 7.5% protein were produced from pasteurized skim milk using a 3×, 3-stage ceramic microfiltration process and a 3×, 3-stage polymeric ultrafiltration membrane process, respectively. The MCC and MPC were each split into 6 batches, based on thermal process and addition of DKP. The 6 batches were no postfiltration heat treatment with added DKP (0.15%), no postfiltration heat without added DKP (0%), postfiltration high-temperature, short time (HTST) with DKP, postfiltration HTST without DKP, postfiltration direct steam injection with DKP, and postfiltration direct steam injection without DKP. The 6 MCC milk-based beverages and the 6 MPC milk-based beverages were stored at 4°C. Viscosity, color, and sensory properties were determined over 15 d of refrigerated storage. MCC- and MPC-based beverages at 7.5% protein with and without 0.15% added dipotassium phosphate were successfully run through an HTST and direct steam injection thermal process. The 7.5% protein MCC-based beverage contained a higher calcium and phosphorus content (2,425 and 1,583 mg/L, respectively) than the 7.5% protein MPC-based beverages (2,141 and 1,338 mg/L, respectively). Pasteurization (HTST) had very little effect on beverage particle size distribution, whereas direct steam injection thermal processing produced protein aggregates with medians in the range of 10 and 175 µm for MPC beverages. A population of casein micelles at about 0.15 µm was found in both MCC- and MPC-based beverages. Larger particles in the 175-µm range were not detected in the MCC beverages. In general, the apparent viscosity (AV) of MCC beverages was higher than MPC beverages. Added DKP increased the AV of both MCC- and MPC-based beverages, while increasing heat treatment decreased AV. The AV of beverages with DKP increased during 15 d of 4°C of storage for both MCC and MPC, whereas there was very little change in AV during storage without DKP and a similar effect was observed for sensory viscosity scores. The L value of beverages was higher with higher heat treatment, but DKP addition decreased L value and sensory opacity greatly. Sulfur-eggy flavors were detected in MPC beverages, but not MCC-based beverages.


Subject(s)
Caseins , Milk Proteins , Animals , Milk Proteins/analysis , Viscosity , Hot Temperature , Steam , Micelles , Phosphates , Beverages/analysis , Food Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...