Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 76: 1075-1084, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482471

ABSTRACT

It has been shown that the cellular responses such as adhesion, proliferation and differentiation are influenced by the surface properties, such as the topography or the surface energy. However, less is known about the effect of the chemical composition and type of material on the differentiation potential. The objective of the present paper is to compare the differentiation potential of periodontal ligament cells (HPLC) into adipocytes, osteoblasts, chondroblasts and cementoblasts of three type of materials (metals, ceramics and polymers) without using any biological induction media, but keeping the average roughness values within a limited range of 2.0-3.0µm. The samples were produced as discs of 14×2mm; (n=30 for each type of material). Two samples of each type were chosen; stainless-steel 316L and commercially pure titanium for the metallic samples. The polymers were polymethyl methacrylate and high-density polyethylene, and finally for the ceramics; zirconia and dental porcelain were used. The surfaces properties of the samples (wettability, chemical composition and point of zero charge, PZC) were measured in order to correlate them with the biological response. To evaluate the potential of differentiation, human periodontal ligament cells obtained from extracted teeth were used since they are a promising source for periodontal tissue regeneration. Cell proliferation was initially tested to assure non-toxic effects using a viability colorimetric assay. Finally, the differentiation pattern was evaluated using real time reverse transcription quantitative polymerase chain reaction for 5, 10 and 15days without adding any induction medium. The results indicated that the relative expression of genes related to a particular phenotype were different for each surface. However, not clear correlation between the type of material or their surface properties (morphology, chemical composition, wettability or point of zero charge) and the expression pattern could be identified. For example, bone markers were mainly expressed on cpTi and PMMA; one metallic hydrophobic and one polymeric hydrophilic sample which have similar Ra values but presented different topographical features, although both samples have in common a PZC below 7.


Subject(s)
Cell Differentiation , Adipogenesis , Biocompatible Materials , Cells, Cultured , Humans , Osteogenesis , Periodontal Ligament
2.
J Dent Res ; 91(2): 203-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22067203

ABSTRACT

Cementum has been shown to contain unique polypeptides that participate in cell recruitment and differentiation during cementum formation. We report the isolation of a cDNA variant for protein-tyrosine phosphatase-like (proline instead of catalytic arginine) member-a (PTPLA) from cementum. A cementifying fibroma-derived λ-ZAP expression library was screened by panning with a monoclonal antibody to cementum attachment protein (CAP), and 1435 bp cDNA (gb AC093525.3) was isolated. This cDNA encodes a 140-amino-acid polypeptide, and its N-terminal 125 amino acids are identical to those of PTPLA. This isoform, designated as PTPLA-CAP, results from a read-through of the PTPLA exon 2 splice donor site, truncating after the second putative transmembrane domain. It contains 15 amino acids encoded within the intron between PTPLA exons 2 and 3, which replace the active site for PTPLA phosphatase activity. The recombinant protein, rhPTPLA-CAP, has Mr 19 kDa and cross-reacts with anti-CAP antibody. Anti-rhPTPLA-CAP antibody immunostained cementum cells, cementum, heart, and liver. Quantitative RT-PCR showed that PTPLA was expressed in all periodontal cells; however, PTPLA-CAP expression was limited to cementum cells. The rhPTPLA-CAP promoted gingival fibroblast attachment. We conclude that PTPLA-CAP is a splice variant of PTPLA, and that, in the periodontium, cementum and cementum cells express this variant.


Subject(s)
Dental Cementum/enzymology , Protein Tyrosine Phosphatases/isolation & purification , Alveolar Process/cytology , Alveolar Process/enzymology , Base Pairing/genetics , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Movement/physiology , Cementogenesis/physiology , Cross Reactions/genetics , DNA, Complementary/genetics , Exons/genetics , Fibroblasts/enzymology , Fluorescent Antibody Technique , Gingiva/cytology , Gingiva/enzymology , Humans , Introns/genetics , Odontogenic Tumors/enzymology , Periodontal Ligament/cytology , Periodontal Ligament/enzymology , Protein Isoforms/genetics , RNA Splice Sites/genetics , Real-Time Polymerase Chain Reaction , Recombinant Proteins , Sequence Analysis, Protein/methods
3.
J Periodontal Res ; 45(6): 809-14, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20572915

ABSTRACT

BACKGROUND AND OBJECTIVE: Cementum is a mineralized tissue that facilitates the attachment of periodontal ligament to the root and surrounding alveolar bone and plays a key role in the regeneration of periodontal tissues. The molecular mechanisms that regulate the proliferation and differentiation of cementoblasts, however, have not been elucidated to date. Enamel molecules are believed to regulate cementoblast differentiation and to initiate the formation of acellular extrinsic fiber cementum. The purpose of this study was therefore to isolate and culture human root-derived cells (HRDC) in order to determine whether they are able to express both cementum and specific enamel proteins and subsequently to confirm these findings in vivo. MATERIAL AND METHODS: Human root-derived cells were isolated and expanded in vitro. Cells were characterized using RT-PCR, immunostaining, western blotting and by examination of total mRNA to determine the expression of cementum and enamel markers. Human periodontal tissues were also examined for the expression of enamel-related proteins by immunostaining. RESULTS: We showed that HRDC express mRNA corresponding to ameloblastin (AMBN), amelogenin (AMEL), enamelin (ENAM), tuftelin (TUFT) and cementum-associated molecules such as cementum protein 1 (CEMP1) and cementum attachment protein (CAP). Western blotting revealed that HRDC express both AMEL and AMBN gene products, as well as the cementum markers CEMP1 and CAP. In vivo, we have showed that AMBN and AMEL are expressed by cementoblasts lining cementum, paravascular cells and periodontal ligament cells. CONCLUSION: These results suggest that enamel-associated and cementum-associated proteins could act synergistically in regulating cementoblast differentiation and cementum deposition and offer new approaches on how the cementogenesis process is regulated.


Subject(s)
Cementogenesis/physiology , Dental Cementum/cytology , Dental Cementum/metabolism , Dental Enamel Proteins/biosynthesis , Amelogenin/biosynthesis , Blotting, Western , Cell Differentiation , Cells, Cultured , Humans , Protein Tyrosine Phosphatases/biosynthesis , Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tooth Root/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...