Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 1(10): 1674-1687, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34723270

ABSTRACT

The production of molecular hydrogen by catalyzing water splitting is central to achieving the decarbonization of sustainable fuels and chemical transformations. In this work, a series of structure-making/breaking cations in the electrolyte were investigated as spectator cations in hydrogen evolution and oxidation reactions (HER/HOR) in the pH range of 1 to 14, whose kinetics was found to be altered by up to 2 orders of magnitude by these cations. The exchange current density of HER/HOR was shown to increase with greater structure-making tendency of cations in the order of Cs+ < Rb+ < K+ < Na+ < Li+, which was accompanied by decreasing reorganization energy from the Marcus-Hush-Chidsey formalism and increasing reaction entropy. Invoking the Born model of reorganization energy and reaction entropy, the static dielectric constant of the electrolyte at the electrified interface was found to be significantly lower than that of bulk, decreasing with the structure-making tendency of cations at the negatively charged Pt surface. The physical origin of cation-dependent HER/HOR kinetics can be rationalized by an increase in concentration of cations on the negatively charged Pt surface, altering the interfacial water structure and the H-bonding network, which is supported by classical molecular dynamics simulation and surface-enhanced infrared absorption spectroscopy. This work highlights immense opportunities to control the reaction rates by tuning interfacial structures of cation and solvents.

2.
J Phys Chem B ; 125(5): 1429-1438, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33525875

ABSTRACT

In this manuscript, we use classical molecular dynamics simulation to explore the origin of specific cation effects on the rates of bulk-phase aqueous electron transfer (ET) reactions. We consider 0.6 M solutions of Cl- and a series of different cations: Li+, Na+, K+, Rb+, and Cs+. We evaluate the collective electrostatic fluctuations that drive Marcus-like ET and find that they are essentially unaffected by changes in the cationic species. This finding implies that the structure making/breaking properties of various cations do not exert a significant influence on bulk-phase ET reactions. We evaluate the role of ion pairing in these specific cation effects and find, unsurprisingly, that model redox anions that are more highly charged tend to pair more effectively with spectator cations than their monovalent counterparts. We demonstrate that this ion pairing significantly affects local electrostatic fluctuations for the anionic redox species and thus conclude that ion pairing is one of the likely sources of rate-dependent cation effects in aqueous ET reactions.

3.
J Phys Chem B ; 120(44): 11582-11594, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27749067

ABSTRACT

The formation of block copolymer micelles with and without hydrophobic nanoparticles is simulated using dissipative particle dynamics. We use the model developed by Spaeth et al. [ Spaeth , J. R. , Kevrekidis , I. G. , and Panagiotopoulos , A. Z. J. Chem. Phys. 2011 , 134 ( (16) ) 164902 ], and drive micelle formation by adjusting the interaction parameters linearly over time to represent a rapid change from organic solvent to water. For different concentrations of added nanoparticles, we determine characteristic times for micelle formation and coagulation, and characterize micelles with respect to size, polydispersity, and nanoparticle loading. Four block copolymers with different numbers of hydrophobic and hydrophilic polymer beads, are examined. We find that increasing the number of hydrophobic beads on the polymer decreases the micelle formation time and lowers polydispersity in the final micelle distribution. Adding more nanoparticles to the simulation has a negligible effect on micelle formation and coagulation times, and monotonically increases the polydispersity of the micelles for a given polymer system. The presence of relatively stable free polymer in one system decreases the amount of polymer encapsulating the nanoparticles, and results in an increase in polydispersity and the number of nanoparticles per micelle for that system, especially at high nanoparticle concentration. Longer polymers lead to micelles with a more uniform nanoparticle loading.

SELECTION OF CITATIONS
SEARCH DETAIL
...