Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biol Educ ; : e0006124, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975770

ABSTRACT

Molecular biology, broadly defined as the investigation of complex biomolecules in the laboratory, is a rapidly advancing field and as such the technologies available to investigators are constantly evolving. This constant advancement has obvious advantages because it allows students and researchers to perform more complex experiments in shorter periods of time. One challenge with such a rapidly advancing field is that techniques that had been vital for students to learn how to perform are now not essential for a laboratory scientist. For example, while cloning a gene in the past could have led to a publication and form the bulk of a PhD thesis project, technology has now made this process only a step toward one of these larger goals and can, in many cases, be performed by a company or core facility. As teachers and mentors, it is imperative that we understand that the technologies we teach in the lab and classroom must also evolve to match these advancements. In this perspective, we discuss how the rapid advances in gene synthesis technologies are affecting curriculum and how our classrooms should evolve to ensure our lessons prepare students for the world in which they will do science.

2.
Mol Neurobiol ; 61(4): 1907-1919, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37807008

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, are frequently combined with medical psychostimulants such as methylphenidate (Ritalin), for example, in the treatment of attention-deficit hyperactivity disorder/depression comorbidity. Co-exposure to these medications also occurs with misuse of methylphenidate as a recreational drug by patients on SSRIs. Methylphenidate, a dopamine reuptake blocker, produces moderate addiction-related gene regulation. Findings show that SSRIs such as fluoxetine given in conjunction with methylphenidate potentiate methylphenidate-induced gene regulation in the striatum in rats, consistent with a facilitatory action of serotonin on addiction-related processes. These SSRIs may thus increase methylphenidate's addiction liability. Here, we investigated the effects of a novel SSRI, vilazodone, on methylphenidate-induced gene regulation. Vilazodone differs from prototypical SSRIs in that, in addition to blocking serotonin reuptake, it acts as a partial agonist at the 5-HT1A serotonin receptor subtype. Studies showed that stimulation of the 5-HT1A receptor tempers serotonin input to the striatum. We compared the effects of acute treatment with vilazodone (10-20 mg/kg) with those of fluoxetine (5 mg/kg) on striatal gene regulation (zif268, substance P, enkephalin) induced by methylphenidate (5 mg/kg), by in situ hybridization histochemistry combined with autoradiography. We also assessed the impact of blocking 5-HT1A receptors by the selective antagonist WAY-100635 (0.5 mg/kg) on these responses. Behavioral effects of these drug treatments were examined in parallel in an open-field test. Our results show that, in contrast to fluoxetine, vilazodone did not potentiate gene regulation induced by methylphenidate in the striatum, while vilazodone enhanced methylphenidate-induced locomotor activity. However, blocking 5-HT1A receptors by WAY-100635 unmasked a potentiating effect of vilazodone on methylphenidate-induced gene regulation, thus confirming an inhibitory role for 5-HT1A receptors. Our findings suggest that vilazodone may serve as an adjunct SSRI with diminished addiction facilitating properties and identify the 5-HT1A receptor as a potential therapeutic target to treat addiction.


Subject(s)
Methylphenidate , Selective Serotonin Reuptake Inhibitors , Humans , Rats , Animals , Vilazodone Hydrochloride , Fluoxetine/pharmacology , Methylphenidate/pharmacology , Receptor, Serotonin, 5-HT1A , Serotonin
3.
J Biol Chem ; 298(12): 102672, 2022 12.
Article in English | MEDLINE | ID: mdl-36334632

ABSTRACT

Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.


Subject(s)
Saccharomyces cerevisiae Proteins , Vacuolar Proton-Translocating ATPases , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Phosphatidylinositols , Vacuoles/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Plasma Membrane Calcium-Transporting ATPases , Phosphotransferases (Alcohol Group Acceptor)/metabolism
4.
Cells ; 11(14)2022 07 16.
Article in English | MEDLINE | ID: mdl-35883657

ABSTRACT

Dopamine and other neurotransmitters have the potential to induce neuroplasticity in the striatum via gene regulation. Dopamine receptor-mediated gene regulation relies on second messenger cascades that involve cyclic nucleotides to relay signaling from the synapse to the nucleus. Phosphodiesterases (PDEs) catalyze cyclic nucleotides and thus potently control cyclic nucleotide signaling. We investigated the role of the most abundant striatal PDE, PDE10A, in striatal gene regulation by assessing the effects of PDE10A inhibition (by a selective PDE10A inhibitor, TP-10) on gene regulation and by comparing the basal expression of PDE10A mRNA throughout the striatum with gene induction by dopamine agonists in the intact or dopamine-depleted striatum. Our findings show that PDE10A expression is most abundant in the sensorimotor striatum, intermediate in the associative striatum and lower in the limbic striatum. The inhibition of PDE10A produced pronounced increases in gene expression that were directly related to levels of local PDE10A expression. Moreover, the gene expression induced by L-DOPA after dopamine depletion (by 6-OHDA), or by psychostimulants (cocaine, methylphenidate) in the intact striatum, was also positively correlated with the levels of local PDE10A expression. This relationship was found for gene markers of both D1 receptor- and D2 receptor-expressing striatal projection neurons. Collectively, these results indicate that PDE10A, a vital part of the dopamine receptor-associated second messenger machinery, is tightly linked to drug-induced gene regulation in the striatum. PDE10A may thus serve as a potential target for modifying drug-induced gene regulation and related neuroplasticity.


Subject(s)
Dopamine Agonists , Dopamine , Dopamine/metabolism , Dopamine Agonists/pharmacology , Gene Expression , Nucleotides, Cyclic , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Receptors, Dopamine D1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...