Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Mass Spectrom ; 50(11): 1270-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26505772

ABSTRACT

Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry is commonly used for the identification of proteinaceous binders and their mixtures in artworks. The determination of protein binders is based on a comparison between the m/z values of tryptic peptides in the unknown sample and a reference one (egg, casein, animal glues etc.), but this method has greater potential to study changes due to ageing and the influence of organic/inorganic components on protein identification. However, it is necessary to then carry out statistical evaluation on the obtained data. Before now, it has been complicated to routinely convert the mass spectrometric data into a statistical programme, to extract and match the appropriate peaks. Only several 'homemade' computer programmes without user-friendly interfaces are available for these purposes. In this paper, we would like to present our completely new, publically available, non-commercial software, ms-alone and multiMS-toolbox, for principal component analyses of MALDI-TOF MS data for R software, and their application to the study of the influence of heterogeneous matrices (organic lakes) for protein identification. Using this new software, we determined the main factors that influence the protein analyses of artificially aged model mixtures of organic lakes and fish glue, prepared according to historical recipes that were used for book illumination, using MALDI-TOF peptide mass mapping.


Subject(s)
Paintings , Principal Component Analysis , Proteins/analysis , Signal Processing, Computer-Assisted , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Copper/chemistry , Insecta/chemistry , Paint , Software , Spectroscopy, Fourier Transform Infrared , Time Factors
2.
ACS Nano ; 9(3): 2548-55, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25761306

ABSTRACT

Graphene quantum dots is a class of graphene nanomaterials with exceptional luminescence properties. Precise dimension control of graphene quantum dots produced by chemical synthesis methods is currently difficult to achieve and usually provides a range of sizes from 3 to 25 nm. In this work, fullerene C60 is used as starting material, due to its well-defined dimension, to produce very small graphene quantum dots (∼2-3 nm). Treatment of fullerene C60 with a mixture of strong acid and chemical oxidant induced the oxidation, cage-opening, and fragmentation processes of fullerene C60. The synthesized quantum dots were characterized and supported by LDI-TOF MS, TEM, XRD, XPS, AFM, STM, FTIR, DLS, Raman spectroscopy, and luminescence analyses. The quantum dots remained fully dispersed in aqueous suspension and exhibited strong luminescence properties, with the highest intensity at 460 nm under a 340 nm excitation wavelength. Further chemical treatments with hydrazine hydrate and hydroxylamine resulted in red- and blue-shift of the luminescence, respectively.

3.
Microsc Res Tech ; 77(8): 574-85, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24825619

ABSTRACT

This article proposes an innovative methodology which employs nondestructive techniques to assess the effectiveness of new formulations based on ionic liquids, as alternative solvents for enzymes (proteases), for the removal of proteinaceous materials from painted surfaces during restoration treatments. Ionic liquids (ILs), also known as "designer" solvents, because of their peculiar properties which can be adjusted by selecting different cation-anion combinations, are potentially green solvents due totheir low vapour pressure. In this study, two ionic liquids were selected: IL1 (1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ])) and IL2 (1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO4 ])). New formulations were prepared with these ILs and two different proteases (E): one acid (E1-pepsin) and one alkaline (E2-obtained from Aspergillus sojae). These formulations were tested on tempera and oil mock-up samples, prepared in accordance with historically documented recipes, and covered with two different types of protein-based varnishes (egg white and isinglass-fish glue). A noninvasive multiscale imaging methodology was applied before and after the treatment to evaluate the cleaning's effectiveness. Different microscopic techniques-optical microscopy (OM) with visible and fluorescent light, scanning electron microscopy (SEM) and atomic force microscopy (AFM)-together with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) were applied on areas cleaned with the new formulations (IL + E) and reference areas cleaned only with the commercial enzyme formulations (gels). MALDI-TOF proved particularly very useful for comparing the diversity and abundance of peptides released by using different enzymatic systems. Microsc. Res. Tech. 77:574-585, 2014. © 2014 Wiley Periodicals, Inc.


Subject(s)
Green Chemistry Technology , Ionic Liquids/chemistry , Paint , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL