Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 11(7)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247964

ABSTRACT

Self-inflating soft tissue expanders represent a valuable modality in reconstructive surgery. For this purpose, particularly synthetic hydrogels that increase their volume by swelling in aqueous environment are used. The current challenge in the field is to deliver a material with a suitable protracted swelling response, ideally with an induction period (for sutured wound healing) followed by a linear increase in volume lasting several days for required tissue reconstruction. Here, we report on synthesis, swelling, thermal, mechanical and biological properties of novel hydrogel tissue expanders based on poly(styrene-alt-maleic anhydride) copolymers covalently crosslinked with p-divinylbenzene. The hydrogels exerted hydrolysis-driven swelling response with induction period over the first two days with minimal volume change and gradual volume growth within 30 days in buffered saline solution. Their final swollen volume reached more than 14 times the dry volume with little dependence on the crosslinker content. The mechanical coherence of samples during swelling and in their fully swollen state was excellent, the compression modulus of elasticity being between 750 and 850 kPa. In vitro cell culture experiments and in vivo evaluation in mice models showed excellent biocompatibility and suitable swelling responses meeting thus the application requirements as soft tissue expanders.

2.
Pharm Res ; 34(7): 1391-1401, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28405914

ABSTRACT

PURPOSE: The present study aims to prepare poly(D,L-lactic acid) (PLA) nanofibers loaded by the immunosuppressant cyclosporine A (CsA, 10 wt%). Amphiphilic poly(ethylene glycol)s (PEG) additives were used to modify the hydrophobic drug release kinetics. METHODS: Four types of CsA-loaded PLA nanofibrous carriers varying in the presence and molecular weight (MW) of PEG (6, 20 and 35 kDa) were prepared by needleless electrospinning. The samples were extracted for 144 h in phosphate buffer saline or tissue culture medium. A newly developed and validated LC-MS/MS method was utilized to quantify the amount of released CsA from the carriers. In vitro cell experiments were used to evaluate biological activity. RESULTS: Nanofibers containing 15 wt% of PEG showed improved drug release characteristics; significantly higher release rates were achieved in initial part of experiment (24 h). The highest released doses of CsA were obtained from the nanofibers with PEG of the lowest MW (6 kDa). In vitro experiments on ConA-stimulated spleen cells revealed the biological activity of the released CsA for the whole study period of 144 h and nanofibers containing PEG with the lowest MW exhibited the highest impact (inhibition). CONCLUSIONS: The addition of PEG of a particular MW enables to control CsA release from PLA nanofibrous carriers. The biological activity of CsA-loaded PLA nanofibers with PEG persists even after 144 h of previous extraction. Prepared materials are promising for local immunosuppression in various medical applications.


Subject(s)
Cyclosporine/chemistry , Immunosuppressive Agents/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Cell Line , Culture Media , Cyclosporine/administration & dosage , Drug Carriers , Drug Liberation , Humans , Hydrophobic and Hydrophilic Interactions , Immunosuppressive Agents/administration & dosage , Kinetics , Particle Size , Spleen/cytology , Surface Properties , Tissue Culture Techniques
3.
J Mater Sci Mater Med ; 28(1): 12, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27995490

ABSTRACT

In order to create a soft tissue surplus, implantable volume expanders are often utilized in dental surgery. Implanted tissue expanders should gradually increase their volume, exerting a constant pressure on the surrounding tissue for weeks. Current tissue expanders are based predominantly on externally inflatable balloons or on osmotically active tissue expanders that use soft hydrogels wrapped in perforated plastic coatings, which limit fluid entry and swelling. We have designed and examined tissue expanders based on the controlled rate expansive hydrogels synthesized from copolymers of selected methacrylates and N-vinylpyrrolidone, cross-linked with a combination of non-degradable (glycol dimethacrylates) and hydrolytically degradable (N,O-dimethacryloylhydroxylamine) cross-linkers. These copolymers have close-to-linear volume expansion rates (up to 6-9 times their original volume) and exert an increasing swelling pressure in vitro. The anesthetic benzocaine has been incorporated into the hydrogels, and kinetic release experiments have shown that most of the drug (90%) was released within 48 h. Our proposed hydrogel expanders are homogeneous and have suitable mechanical properties, thus simplifying the surgical manipulations required. Further studies will be needed to completely evaluate their biocompatibility and tissue response to the implants.


Subject(s)
Hydrogels/chemistry , Methacrylates/chemistry , Oral Medicine/methods , Polymers/chemistry , Tissue Expansion Devices , Anesthetics/administration & dosage , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Humans , Hydroxylamines/chemistry , Kinetics , Pressure
4.
Acta Pharm ; 66(4): 449-469, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27749252

ABSTRACT

Niacin was the first hypolipidemic drug to significantly reduce both major cardiovascular events and mortality in patients with cardiovascular disease. Niacin favorably influences all lipoprotein classes, including lipoprotein[a],and belongs to the most potent hypolipidemic drugs for increasing HDL-C. Moreover, niacin causes favorable changes to the qualitative composition of lipoprotein HDL. In addition to its pronounced hypolipidemic action, niacin exerts many other, non-hypolipidemic effects (e.g., antioxidative, anti-inflammatory, antithrombotic), which favorably influence the development and progression of atherosclerosis. These effects are dependent on activation of the specific receptor HCA2. Recent results published by the two large clinical studies, AIM-HIGH and HPS2-THRIVE, have led to the impugnation of niacin's role in future clinical practice. However, due to several methodological flaws in the AIM-HIGH and HPS2-THRIVE studies, the pleiotropic effects of niacin now deserve thorough evaluation. This review summarizes the present and possible future use of niacin in clinical practice in light of its newly recognized pleiotropic effects.


Subject(s)
Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Models, Biological , Niacin/therapeutic use , Receptors, G-Protein-Coupled/antagonists & inhibitors , Vasodilator Agents/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/adverse effects , Antioxidants/therapeutic use , Atherosclerosis/chemically induced , Atherosclerosis/etiology , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Disease Progression , Drug Therapy, Combination/adverse effects , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hyperlipidemias/metabolism , Hyperlipidemias/physiopathology , Hypolipidemic Agents/adverse effects , Hypolipidemic Agents/pharmacology , Niacin/adverse effects , Niacin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/metabolism , Vasodilator Agents/adverse effects , Vasodilator Agents/pharmacology
5.
Beilstein J Nanotechnol ; 6: 1939-45, 2015.
Article in English | MEDLINE | ID: mdl-26665065

ABSTRACT

Nanofibers were prepared from polycaprolactone, polylactide and polyvinyl alcohol using Nanospider(TM) technology. Polyethylene glycols with molecular weights of 2 000, 6 000, 10 000 and 20 000 g/mol, which can be used to moderate the release profile of incorporated pharmacologically active compounds, served as model molecules. They were terminated by aromatic isocyanate and incorporated into the nanofibers. The release of these molecules into an aqueous environment was investigated. The influences of the molecular length and chemical composition of the nanofibers on the release rate and the amount of released polyethylene glycols were evaluated. Longer molecules released faster, as evidenced by a significantly higher amount of released molecules after 72 hours. However, the influence of the chemical composition of nanofibers was even more distinct - the highest amount of polyethylene glycol molecules released from polyvinyl alcohol nanofibers, the lowest amount from polylactide nanofibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...