Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998056

ABSTRACT

This study aimed to identify SNPs in the intron, exon, and UTR regions of the FASN, DGAT1, and PPARGC1A genes and to investigate their possible association with milk yield and composition traits in the riverine buffalo of Bangladesh. A total of 150 DNA samples from riverine buffalo were used for PCR amplification with five pairs of primers, followed by association studies using a generalized linear model in R. SNP genotyping was performed by direct sequencing of the respective amplicon. Traits analyzed included DMY, fat%, protein%, and SNF%. This study identified 8 SNPs in FASN (g.7163G>A and g.7271C>T), DGAT1 (g.7809C>T and g.8525C>T) and PPARGC1A (g.387642C>T, g.387758A>G, g.409354A>G, and g.409452G>A). Genotypic and allelic frequencies differed significantly for each SNP genotype and did not follow the Hardy-Weinberg principle (p < 0.01 or p < 0.001) in most cases. The g.7163G>A and g.7271C>T SNP genotypes of the FASN gene were significantly associated with milk fat%, with the latter also significantly associated with SNF%. The g.8525C>T polymorphism of the DGAT1 gene significantly affected protein% (p < 0.01). Additionally, PPARGC1A gene polymorphisms showed significant associations: g.387642C>T with fat% (p < 0.05); g.387758A>G and g.409354A>G with protein% (p < 0.001) and SNF% (p < 0.01); and g.409452G>A with DMY (p < 0.001), fat% (p < 0.05), and protein% (p < 0.01). Reconstructed haplotypes of the PPARGC1A gene were significantly associated (p < 0.01) with all traits except SNF%. These findings suggest that polymorphisms in these three candidate genes have the potential as molecular markers for improving milk yield and composition traits in the riverine buffalo of Bangladesh.

2.
Molecules ; 27(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011527

ABSTRACT

Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. This comprehensive review includes the putative anticancer compounds from plant-derived endophytic fungi discovered from 1990 to 2020 with their source endophytic fungi and host plants as well as their antitumor activity against various cell lines.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Endophytes/chemistry , Fungi/chemistry , Animals , Antineoplastic Agents/isolation & purification , Biological Products/isolation & purification , Clinical Studies as Topic , Drug Discovery/methods , Drug Evaluation, Preclinical , Endophytes/metabolism , Fungi/metabolism , Humans , Plants/microbiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...