Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994970

ABSTRACT

The escalating elderly population worldwide has prompted a surge of interest in longevity medicine. Its goal is to interfere with the speed of ageing by slowing it down or even reversing its accompanying effects. As a field, it is rapidly growing and spreading into different branches. One of these is the use of nutraceuticals as anti-ageing drugs. This field is gaining massive popularity nowadays, as people are shifting towards a more natural approach to life and seeking to use natural products as a source of medicine. The present article focuses on the cellular effect of Haberlea rhodopensis Friv. in vitro culture total ethanol extract (HRT), produced by a sustainable biotechnological approach. The extract showed a similar phytochemical profile to plant leaf extract and was rich in primary bioactive ingredients-caffeoyl phenylethanoid glycosides, myconoside, and paucifloside. This study examined the biosafety potential, cytotoxicity, genotoxicity, and mitochondrial activity of the extract using in vitro cultures. The results showed high cell survival rates and minimal cytotoxic effects on Lep3 cells, with no induction of reactive oxygen species nor genotoxicity. Additionally, the extract positively influenced mitochondrial activity, indicating potential benefits for cellular health. The results are promising and show the beneficial effect of HRT without the observation of any adverse effects, which sets the foundation for its further testing and potential therapeutic applications.


Subject(s)
Ethanol , Mitochondria , Plant Extracts , Plant Extracts/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Humans , Cell Survival/drug effects , Animals , Reactive Oxygen Species/metabolism , DNA Damage/drug effects , Cell Line , Mice
2.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38931344

ABSTRACT

Nanotechnology has emerged as a transformative force in oncology, facilitating advancements in site-specific cancer therapy and personalized oncomedicine. The development of nanomedicines explicitly targeted to cancer cells represents a pivotal breakthrough, allowing the development of precise interventions. These cancer-cell-targeted nanomedicines operate within the intricate milieu of the tumour microenvironment, further enhancing their therapeutic efficacy. This comprehensive review provides a contemporary perspective on precision cancer medicine and underscores the critical role of nanotechnology in advancing site-specific cancer therapy and personalized oncomedicine. It explores the categorization of nanoparticle types, distinguishing between organic and inorganic variants, and examines their significance in the targeted delivery of anticancer drugs. Current insights into the strategies for developing actively targeted nanomedicines across various cancer types are also provided, thus addressing relevant challenges associated with drug delivery barriers. Promising future directions in personalized cancer nanomedicine approaches are delivered, emphasising the imperative for continued optimization of nanocarriers in precision cancer medicine. The discussion underscores translational research's need to enhance cancer patients' outcomes by refining nanocarrier technologies in nanotechnology-driven, site-specific cancer therapy.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38251152

ABSTRACT

The growing interest in graphene oxide (GO) for different biomedical applications requires thoroughly examining its safety. Therefore, there is an urgent need for reliable data on how GO nanoparticles affect healthy cells and organs. In the current work, we adopted a comprehensive approach to assess the influence of GO and its polyethylene glycol-modified form (GO-PEG) under near-infrared (NIR) exposure on several biological aspects. We evaluated the contractility of isolated frog hearts, the activity of two rat liver enzymes-mitochondrial ATPase and diamine oxidase (DAO), and the production of reactive oxygen species (ROS) in C2C12 skeletal muscle cells following direct exposure to GO nanoparticles. The aim was to study the influence of GO nanoparticles at multiple levels-organ; cellular; and subcellular-to provide a broader understanding of their effects. Our data demonstrated that GO and GO-PEG negatively affect heart contractility in frogs, inducing stronger arrhythmic contractions. They increased ROS production in C2C12 myoblasts, whose effects diminished after NIR irradiation. Both nanoparticles in the rat liver significantly stimulated DAO activity, with amplification of this effect after NIR irradiation. GO did not uncouple intact rat liver mitochondria but caused a concentration-dependent decline in ATPase activity in freeze/thaw mitochondria. This multifaceted investigation provides crucial insights into GOs potential for diverse implications in biological systems.

4.
J Biomed Mater Res A ; 107(12): 2619-2628, 2019 12.
Article in English | MEDLINE | ID: mdl-31376316

ABSTRACT

Myogenic differentiation during muscle regeneration is guided by various physical and biochemical factors. Recently, substratum elasticity has gained attention as a physical signal that influences both cell differentiation and tissue regeneration. In this work, we investigated the influence of substratum elasticity on proliferation and differentiation of myogenic cells, mouse myoblasts of the C2C12 cell line and mouse primary myoblasts derived from satellite cells-muscle stem cells playing key role in muscle regeneration. Materials with different elastic moduli within the MPa scale based on polydimethylsiloxane (PDMS) were used as cell substratum and characterized for surface roughness, wettability, and micromechanical characteristics. We found that surface properties of PDMS substrates are alter nonlinearly with the increase of the material's elastic modulus. Using this system we provide an evidence that materials with elastic modulus higher than that of physiological skeletal muscle tissue do not perturb myogenic differentiation of both types of myoblasts; thus, can be used as biomaterials for muscle tissue engineering. PDMS materials with elasticity within the range of 2.5-4 MPa may transiently limit the proliferation of myoblasts, but not the efficiency of their differentiation. Direct correlation between substratum elasticity and myogenic differentiation efficiency was not observed but the other surface properties of the PDMS materials such as nanoroughness and wettability were also diverse.


Subject(s)
Biocompatible Materials/chemistry , Dimethylpolysiloxanes/chemistry , Muscle Development , Myoblasts/cytology , Animals , Cell Differentiation , Cell Line , Elastic Modulus , Mice , Surface Properties , Tissue Scaffolds/chemistry
5.
Oxid Med Cell Longev ; 2019: 3738980, 2019.
Article in English | MEDLINE | ID: mdl-31015889

ABSTRACT

Nanotechnology-based drug delivery systems for cancer therapy are the topic of interest for many researchers and scientists. Graphene oxide (GO) and its derivates are among the most extensively studied delivery systems of this type. The increased surface area, elevated loading capacity, and aptitude for surface functionalization together with the ability to induce reactive oxygen species make GO a promising tool for the development of novel anticancer therapies. Moreover, GO nanoparticles not only function as effective drug carriers but also have the potential to exert their own inhibitory effects on tumour cells. Recent results show that the functionalization of GO with different functional groups, namely, with amine groups, leads to increased reactivity of the nanoparticles. The last steers different hypotheses for the mechanisms through which this functionalization of GO could potentially lead to improved anticancer capacity. In this research, we have evaluated the potential of amine-functionalized graphene oxide nanoparticles (GO-NH2) as new molecules for colorectal cancer therapy. For the purpose, we have assessed the impact of aminated graphene oxide (GO) sheets on the viability of colon cancer cells, their potential to generate ROS, and their potential to influence cellular proliferation and survival. In order to elucidate their mechanism of action on the cellular systems, we have probed their genotoxic and cytostatic properties and compared them to pristine GO. Our results revealed that both GO samples (pristine and aminated) were composed of few-layer sheets with different particle sizes, zeta potential, and surface characteristics. Furthermore, we have detected increased cyto- and genotoxicity of the aminated GO nanoparticles following 24-hour exposure on Colon 26 cells. The last leads us to conclude that exposure of cancer cells to GO, namely, aminated GO, can significantly contribute to cancer cell killing by enhancing the cytotoxicity effect exerted through the induction of ROS, subsequent DNA damage, and apoptosis.


Subject(s)
Amines/therapeutic use , Colorectal Neoplasms/therapy , Graphite/therapeutic use , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape , Cell Survival , Colorectal Neoplasms/pathology , DNA Damage , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Reactive Oxygen Species/metabolism
6.
Turk J Biol ; 42(2): 195-203, 2018.
Article in English | MEDLINE | ID: mdl-30814881

ABSTRACT

In the present study we demonstrated that composite PPHMDS/DND coatings with elastic moduli close to those of mature bone tissue (0.2-2.8 GPa) stimulated growth and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs). Composite coatings were prepared by a method of plasma polymerization (PP) where detonation nanodiamond (DND) particles in different amounts (0.1, 0.5, and 1 mg/mL) were added to hexamethyldisiloxane (HMDS) before plasma deposition. This method allows variation only in the reduced elastic modulus (Er´) with increase in the particle concentration, while the other surface properties, including surface wettability and topography, did not change. The response of hAD-MSCs to the increasing stifness showed an effect on adhesion and osteogenic differentiation but not on cell proliferation. Matrix mineralization and cell spreading were maximized on PPHMDS/DND coatings with the highest elastic modulus (2.826 GPa), while the differences in proliferation rates among the samples were negligible. In general, PPHMDS/DND coatings provide better conditions for growth and osteogenic differentiation of hAD-MSCs in comparison to glass coverslips, confirming their suitability for osteo-integration applications. Additionally, our findings support the hypothesis that biomaterials with elasticity similar to that of the native tissue can improve the differentiation potential of mesenchymal stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...