Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mycorrhiza ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829432

ABSTRACT

Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.

2.
Heliyon ; 10(4): e26485, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38444950

ABSTRACT

Arbuscular mycorrhizal (AM) fungi are supposedly competing with ammonia-oxidizing microorganisms (AO) for soil nitrogen in form of ammonium. Despite a few studies directly addressing AM fungal and AO interactions, mostly in artificial cultivation substrates, it is not yet clear whether AM fungi can effectively suppress AO in field soils containing complex indigenous microbiomes. To fill this knowledge gap, we conducted compartmentalized pot experiments using four pairs of cropland and grassland soils with varying physicochemical properties. To exclude the interference of roots, a fine nylon mesh was used to separate the rhizosphere and mesh bags, with the latter being filled with unsterile field soils. Inoculation of plants with AM fungus Rhizophagus irregularis LPA9 suppressed AO bacteria (AOB) but not archaea (AOA) in the soils, indicating how soil nitrification could be suppressed by AM fungal presence/activity. In addition, in rhizosphere filled with artificial substrate, AM inoculation did suppress both AOB and AOA, implying more complex interactions between roots, AO, and AM fungi. Besides, we also observed that indigenous AM fungi contained in the field soils eventually did colonize the roots of plants behind the root barrier, and that the extent of such colonization was higher if the soil has previously been taken from cropland than from grassland. Despite this, the effect of experimental AM fungal inoculation on suppression of indigenous AOB in the unsterile field soils did not vanish. It seems that studying processes at a finer temporal scale, using larger buffer zones between rhizosphere and mesh bags, and/or detailed characterization of indigenous AM fungal and AO communities would be needed to uncover further details of the biotic interactions between the AM fungi and indigenous soil AO.

3.
Mycorrhiza ; 33(5-6): 399-408, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814097

ABSTRACT

Specific biomarker molecules are increasingly being used for detection and quantification in plant and soil samples of arbuscular mycorrhizal (AM) fungi, an important and widespread microbial guild heavily implicated in transfers of nutrients and carbon between plants and soils and in the maintenance of soil physico-chemical properties. Yet, concerns have previously been raised as to the validity of a range of previously used approaches (e.g., microscopy, AM-specific fatty acids, sterols, glomalin-like molecules, ribosomal DNA sequences), justifying further research into novel biomarkers for AM fungal abundance and/or functioning. Here, we focused on complex polar lipids contained in pure biomass of Rhizophagus irregularis and in nonmycorrhizal and mycorrhizal roots of chicory (Cichorium intybus), leek (Allium porrum), and big bluestem (Andropogon gerardii). The lipids were analyzed by shotgun lipidomics using a high-resolution hybrid mass spectrometer. Size range between 1350 and 1550 Da was chosen for the detection of potential biomarkers among cardiolipins (1,3-bis(sn-3'-phosphatidyl)-sn-glycerols), a specific class of phospholipids. The analysis revealed a variety of molecular species, including cardiolipins containing one or two polyunsaturated fatty acids with 20 carbon atoms each, i.e., arachidonic and/or eicosapentaenoic acids, some of them apparently specific for the mycorrhizal samples. Although further verification using a greater variety of AM fungal species and samples from various soils/ecosystems/environmental conditions is needed, current results suggest the possibility to identify novel biochemical signatures specific for AM fungi within mycorrhizal roots. Whether they could be used for quantification of both root and soil colonization by the AM fungi merits further scrutiny.


Subject(s)
Mycorrhizae , Cardiolipins , Ecosystem , Fungi , Plants , Onions , Soil/chemistry , Carbon , Plant Roots/microbiology
4.
Sci Total Environ ; 855: 159002, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36155032

ABSTRACT

Thelephora penicillata is an ectomycorrhizal mushroom that can accumulate extraordinarily high concentrations of Cd, As, Cu, and Zn in its fruit-bodies. To better understand its element accumulation ability, we compared the element concentrations in T. penicillata with 10 distinct ectomycorrhizal mushroom species growing at the same site (Karlina Pila, Czech Republic). On average, T. penicillata accumulated 330, 2130, 26, and 4 times more Cd, As, Cu, and Zn, respectively, than other mushrooms. Size-exclusion chromatography and an electrophoretic analysis of T. penicillata cell extracts indicate that intracellular Cd may be present mainly in >1 kDa, presumably compartmentalized, Cd species, and partially binding with 6-kDa cysteinyl-containing peptide(s) resembling metallothioneins. The cadmium isotopic composition of mushroom fruit-bodies, soil digests, and soil extracts was investigated by thermal ionization mass spectrometry (TIMS) with double spike correction. The isotopic composition (δ114/110Cd) of ectomycorrhizal mushrooms from Karlina Pila varied in a wide range of -0.37 to +0.14 ‰. However, remarkably low δ114/110Cd values were observed in the majority of the investigated mushrooms when compared to the relatively homogeneous Cd isotopic composition of bulk soil (δ114/110Cd = +0.09 ‰) and the comparatively heavy isotopic composition of soil extracts (mean δ114/110Cd values of +0.11 ± 0.01 ‰ and +0.22 ± 0.01 ‰, depending on the extraction method). The isotopic composition of Cd hyperaccumulated in T. penicillata essentially matched the mycoavailable soil Cd fraction. However, most isotopic data indicates isotopic fractionation at the soil/fruit-body interface, which could be of environmental significance.


Subject(s)
Agaricales , Mycorrhizae , Soil Pollutants , Cadmium/analysis , Agaricales/metabolism , Soil Pollutants/analysis , Soil/chemistry , Mycorrhizae/metabolism
5.
Front Microbiol ; 14: 1284648, 2023.
Article in English | MEDLINE | ID: mdl-38239731

ABSTRACT

Introduction: The hyphosphere of arbuscular mycorrhizal (AM) fungi is teeming with microbial life. Yet, the influence of nutrient availability or nutrient forms on the hyphosphere microbiomes is still poorly understood. Methods: Here, we examined how the microbial community (prokaryotic, fungal, protistan) was affected by the presence of the AM fungus Rhizophagus irregularis in the rhizosphere and the root-free zone, and how different nitrogen (N) and phosphorus (P) supplements into the root-free compartment influenced the communities. Results: The presence of AM fungus greatly affected microbial communities both in the rhizosphere and the root-free zone, with prokaryotic communities being affected the most. Protists were the only group of microbes whose richness and diversity were significantly reduced by the presence of the AM fungus. Our results showed that the type of nutrients AM fungi encounter in localized patches modulate the structure of hyphosphere microbial communities. In contrast we did not observe any effects of the AM fungus on (non-mycorrhizal) fungal community composition. Compared to the non-mycorrhizal control, the root-free zone with the AM fungus (i.e., the AM fungal hyphosphere) was enriched with Alphaproteobacteria, some micropredatory and copiotroph bacterial taxa (e.g., Xanthomonadaceae and Bacteroidota), and the poorly characterized and not yet cultured Acidobacteriota subgroup GP17, especially when phytate was added. Ammonia-oxidizing Nitrosomonas and nitrite-oxidizing Nitrospira were significantly suppressed in the presence of the AM fungus in the root-free compartment, especially upon addition of inorganic N. Co-occurrence network analyses revealed that microbial communities in the root-free compartment were complex and interconnected with more keystone species when AM fungus was present, especially when the root-free compartment was amended with phytate. Conclusion: Our study showed that the form of nutrients is an important driver of prokaryotic and eukaryotic community assembly in the AM fungal hyphosphere, despite the assumed presence of a stable and specific AM fungal hyphoplane microbiome. Predictable responses of specific microbial taxa will open the possibility of using them as co-inoculants with AM fungi, e.g., to improve crop performance.

6.
Appl Environ Microbiol ; 88(20): e0136922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36190238

ABSTRACT

Both plants and their associated arbuscular mycorrhizal (AM) fungi require nitrogen (N) for their metabolism and growth. This can result in both positive and negative effects of AM symbiosis on plant N nutrition. Either way, the demand for and efficiency of uptake of mineral N from the soil by mycorrhizal plants are often higher than those of nonmycorrhizal plants. In consequence, the symbiosis of plants with AM fungi exerts important feedbacks on soil processes in general and N cycling in particular. Here, we investigated the role of the AM symbiosis in N uptake by Andropogon gerardii from an organic source (15N-labeled plant litter) that was provided beyond the direct reach of roots. In addition, we tested if pathways of 15N uptake from litter by mycorrhizal hyphae were affected by amendment with different synthetic nitrification inhibitors (dicyandiamide [DCD], nitrapyrin, or 3,4-dimethylpyrazole phosphate [DMPP]). We observed efficient acquisition of 15N by mycorrhizal plants through the mycorrhizal pathway, independent of nitrification inhibitors. These results were in stark contrast to 15N uptake by nonmycorrhizal plants, which generally took up much less 15N, and the uptake was further suppressed by nitrapyrin or DMPP amendments. Quantitative real-time PCR analyses showed that bacteria involved in the rate-limiting step of nitrification, ammonia oxidation, were suppressed similarly by the presence of AM fungi and by nitrapyrin or DMPP (but not DCD) amendments. On the other hand, abundances of ammonia-oxidizing archaea were not strongly affected by either the AM fungi or the nitrification inhibitors. IMPORTANCE Nitrogen is one of the most important elements for all life on Earth. In soil, N is present in various chemical forms and is fiercely competed for by various microorganisms as well as plants. Here, we address competition for reduced N (ammonia) between ammonia-oxidizing prokaryotes and arbuscular mycorrhizal fungi. These two functionally important groups of soil microorganisms, participating in nitrification and plant mineral nutrient acquisition, respectively, have often been studied in separation in the past. Here, we showed, using various biochemical and molecular approaches, that the fungi systematically suppress ammonia-oxidizing bacteria to an extent similar to that of some widely used synthetic nitrification inhibitors, whereas they have only a limited impact on abundance of ammonia-oxidizing archaea. Competition for free ammonium is a plausible explanation here, but it is also possible that the fungi produce some compounds acting as so-called biological nitrification inhibitors.


Subject(s)
Ammonium Compounds , Mycorrhizae , Nitrification , Mycorrhizae/metabolism , Ammonia/metabolism , Soil Microbiology , Dimethylphenylpiperazinium Iodide/metabolism , Dimethylphenylpiperazinium Iodide/pharmacology , Archaea/metabolism , Soil/chemistry , Nitrogen/metabolism , Ammonium Compounds/metabolism , Plant Roots/metabolism
7.
Sci Total Environ ; 826: 154227, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35240185

ABSTRACT

Fruit-bodies of six Thelephora species (Fungi, Basidiomycota, Thelephoraceae) were analyzed for their trace element concentrations. In Thelephora penicillata, extremely high concentrations of Cd and As were found, followed by highly elevated concentrations of Cu and Zn. The highest accumulation ability was found for Cd with a mean concentration of 1.17 ± 0.37 g kg-1 (dry mass) in fruit-bodies collected from 20 unpolluted sites; the mean As concentration was 0.878 ± 0.242 g kg-1. Furthermore, striking accumulation of Se (923 ± 28 mg kg-1) was found in one sample of T. vialis and elevated concentrations of S were detected in T. palmata (19.6 ± 5.9 g kg-1). The analyzed Thelephora species were sequenced and, based on the Maximum Likelihood phylogenetic analysis (ITS rDNA) of the genus, possible other Thelephora (hyper)accumulators were predicted on the basis of their phylogenetic relationship with the discovered (hyper)accumulators. The striking ability of T. penicillata to accumulate simultaneously Cd, As, Cu, and Zn has no parallel in the Fungal Kingdom and raises the question of a biological importance of metal(loid) hyperaccumulation in mushrooms.


Subject(s)
Agaricales , Arsenic , Basidiomycota , Mycorrhizae , Cadmium/analysis , Mycorrhizae/chemistry , Phylogeny
8.
ISME J ; 16(3): 676-685, 2022 03.
Article in English | MEDLINE | ID: mdl-34545172

ABSTRACT

Arbuscular mycorrhizal (AM) fungi lack efficient exoenzymes to access organic nutrients directly. Nevertheless, the fungi often obtain and further channel to their host plants a significant share of nitrogen (N) and/or phosphorus from such resources, presumably via cooperation with other soil microorganisms. Because it is challenging to disentangle individual microbial players and processes in complex soil, we took a synthetic approach here to study 15N-labelled chitin (an organic N source) recycling via microbial loop in AM fungal hyphosphere. To this end, we employed a compartmented in vitro cultivation system and monoxenic culture of Rhizophagus irregularis associated with Cichorium intybus roots, various soil bacteria, and the protist Polysphondylium pallidum. We showed that upon presence of Paenibacillus sp. in its hyphosphere, the AM fungus (and associated plant roots) obtained several-fold larger quantities of N from the chitin than it did with any other bacteria, whether chitinolytic or not. Moreover, we demonstrated that adding P. pallidum to the hyphosphere with Paenibacillus sp. further increased by at least 65% the gain of N from the chitin by the AM fungus compared to the hyphosphere without protists. We thus directly demonstrate microbial interplay possibly involved in efficient organic N utilisation by AM fungal hyphae.


Subject(s)
Mycorrhizae , Bacteria/genetics , Nitrogen , Phosphorus , Plant Roots , Soil
9.
Front Microbiol ; 12: 574060, 2021.
Article in English | MEDLINE | ID: mdl-33679625

ABSTRACT

Symbiosis between plants and arbuscular mycorrhizal (AM) fungi, involving great majority of extant plant species including most crops, is heavily implicated in plant mineral nutrition, abiotic and biotic stress tolerance, soil aggregate stabilization, as well as shaping soil microbiomes. The latter is particularly important for efficient recycling from soil to plants of nutrients such as phosphorus and nitrogen (N) bound in organic forms. Chitin is one of the most widespread polysaccharides on Earth, and contains substantial amounts of N (>6% by weight). Chitin is present in insect exoskeletons and cell walls of many fungi, and can be degraded by many prokaryotic as well as eukaryotic microbes normally present in soil. However, the AM fungi seem not to have the ability to directly access N bound in chitin molecules, thus relying on microbes in their hyphosphere to gain access to this nutrient-rich resource in the process referred to as organic N mineralization. Here we show, using data from two pot experiments, both including root-free compartments amended with 15N-labeled chitin, that AM fungi can channel substantial proportions (more than 20%) of N supplied as chitin into their plants hosts within as short as 5 weeks. Further, we show that overall N losses (leaching and/or volatilization), sometimes exceeding 50% of the N supplied to the soil as chitin within several weeks, were significantly lower in mycorrhizal as compared to non-mycorrhizal pots. Surprisingly, the rate of chitin mineralization and its N utilization by the AM fungi was at least as fast as that of green manure (clover biomass), based on direct 15N labeling and tracing. This efficient N recycling from soil to plant, observed in mycorrhizal pots, was not strongly affected by the composition of AM fungal communities or environmental context (glasshouse or outdoors, additional mineral N supply to the plants or not). These results indicate that AM fungi in general can be regarded as a critical and robust soil resource with respect to complex soil processes such as organic N mineralization and recycling. More specific research is warranted into the exact molecular mechanisms and microbial players behind the observed patterns.

10.
Extremophiles ; 24(4): 577-591, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32449144

ABSTRACT

Biofilm formation is a typical life strategy used by microorganisms populating acidic water systems. The same strategy might be used by microbes in highly acidic soils that are, however, neglected in this regard. In the present study, the microbial community in such highly acidic soil in the Soos National Nature Reserve (Czech Republic) has been investigated using high-throughput DNA sequencing and the organisms associated with biofilm life mode and those preferring planktonic life were distinguished using the biofilm trap technique. Our data show the differences between biofilm and planktonic microbiota fraction, although the majority of the organisms were capable of using both life modes. The by far most abundant prokaryotic genus was Acidiphilium and fungi were identified among the most abundant eukaryotic elements in biofilm formations. On the other hand, small flagellates from diverse taxonomical groups predominated in plankton. The application of cellulose amendment as well as the depth of sampling significantly influenced the composition of the detected microbial community.


Subject(s)
Microbiota , Plankton , Biofilms , Czech Republic , Hydrogen-Ion Concentration , Soil , Soil Microbiology
11.
Mycorrhiza ; 30(1): 63-77, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32062707

ABSTRACT

Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.


Subject(s)
Andropogon , Glomeromycota , Mycorrhizae , Biomass , Plant Roots , Symbiosis
12.
PLoS One ; 14(11): e0224938, 2019.
Article in English | MEDLINE | ID: mdl-31710651

ABSTRACT

Research efforts directed to elucidation of mechanisms behind trading of resources between the partners in the arbuscular mycorrhizal (AM) symbiosis have seen a considerable progress in the recent years. Yet, despite of the recent developments, some key questions still remain unanswered. For example, it is well established that the strictly biotrophic AM fungus releases phosphorus to- and receives carbon molecules from the plant symbiont, but the particular genes, and their products, responsible for facilitating this exchange, are still not fully described, nor are the principles and pathways of their regulation. Here, we made a de novo quest for genes involved in carbon transfer from the plant to the fungus using genome-wide gene expression array targeting whole root and whole shoot gene expression profiles of mycorrhizal and non-mycorrhizal Medicago truncatula plants grown in a glasshouse. Using physiological intervention of heavy shading (90% incoming light removed) and the correlation of expression levels of MtPT4, the mycorrhiza-inducible phosphate transporter operating at the symbiotic interface between the root cortical cells and the AM fungus, and our candidate genes, we demonstrate that several novel genes may be involved in resource tradings in the AM symbiosis established by M. truncatula. These include glucose-6-phosphate/phosphate translocator, polyol/monosaccharide transporter, DUR3-like, nucleotide-diphospho-sugar transferase or a putative membrane transporter. Besides, we also examined the expression of other M. truncatula phosphate transporters (MtPT1-3, MtPT5-6) to gain further insights in the balance between the "direct" and the "mycorrhizal" phosphate uptake pathways upon colonization of roots by the AM fungus, as affected by short-term carbon/energy deprivation. In addition, the role of the novel candidate genes in plant cell metabolism is discussed based on available literature.


Subject(s)
Carbon/metabolism , Medicago truncatula/microbiology , Mycorrhizae/physiology , Phosphorus/metabolism , Plant Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Metabolic Networks and Pathways , Mycorrhizae/genetics , Symbiosis , Exome Sequencing
13.
Mycorrhiza ; 29(6): 567-579, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31724087

ABSTRACT

Despite the crucial importance of arbuscular mycorrhizal fungi (AMF) for numerous processes within terrestrial ecosystems, knowledge of the determinants of AMF community structure still is limited, mainly because of the limited scope of the available individual case studies which often only include a few environmental variables. Here, we describe the AMF diversity of mid-European meadows (mown or regularly cut grasslands, or recently abandoned lands where grasslands established spontaneously) within a considerably heterogeneous landscape over a scale of several hundred kilometers with regard to macroclimatic, microclimatic, and soil parameters. We include data describing the habitat (including vegetation type), geography, and climate, and test their contribution to the structure of the AMF communities at a regional scale. We amplified and sequenced the ITS 2 region of the ribosomal DNA operon of the AMF from soil samples using nested PCR and Illumina pair-end amplicon sequencing. Habitat (especially soil pH) and geographical parameters (spatial distance, altitude, and longitude) were the main determinants of the structure of the AMF communities in the meadows at a regional scale, with the abundance of genera Septoglomus, Paraglomus, Archaeospora, Funneliformis, and Dominikia driving the main response. The effects of climate and vegetation type were not significant and were mainly encompassed within the geography and/or soil pH effects. This study illustrates how important it is to have a large set of environmental metadata to compare the importance of different factors influencing the AMF community structure at large spatial scales.


Subject(s)
Mycobiome , Mycorrhizae , DNA, Fungal , Ecosystem , Geography , Grassland , Soil , Soil Microbiology
14.
Sci Total Environ ; 694: 133679, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31400682

ABSTRACT

Amanita strobiliformis (European Pine Cone Lepidella) is an ectomycorrhizal fungus of the Amanitaceae family known to hyperaccumulate Ag in the sporocarps. Two populations (ecotypes) of A. strobiliformis collected from two urban forest plantations in Prague, Czech Republic, were investigated. The concentrations of Ag, Cu, Cd, and Zn were determined in the mushrooms. The metal mobility and fractionation in the soils was investigated by single extractions and sequential extraction. The soil distribution of A. strobiliformis mycelium was assessed by quantitative polymerase chain reaction (qPCR). The metal uptake from the soil into the mushroom sporocarps was traced by Pb isotopic fingerprinting. The findings suggested that A. strobiliformis (i) accumulates primarily Ag from the topsoil layer (circa 12cm deep) and (ii) accumulates Ag associated with the "reducible soil fraction". The concentrations of all metals, particularly Ag and Cu, were significantly higher in the A. strobiliformis sporocarps from one of the investigated sites (Klícov). The elevated concentrations of Ag in the sporocarps from Klícov can possibly be attributed to the higher Ag content in the topsoil layer found at this site. However, the simultaneously elevated concentrations of Cu in A. strobiliformis from Klícov cannot be explained by the differences in the geochemical background and should be attributed to biological factors.


Subject(s)
Amanita/physiology , Copper/metabolism , Environmental Monitoring , Silver/metabolism , Soil Pollutants/metabolism , Mycorrhizae
15.
Mycorrhiza ; 28(5-6): 435-450, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29931404

ABSTRACT

Establishment of nonmycorrhizal controls is a "classic and recurrent theme" in mycorrhizal research. For decades, authors reported mycorrhizal plant growth/nutrition as compared to various nonmycorrhizal controls. In such studies, uncertainties remain about which nonmycorrhizal controls are most appropriate and, in particular, what effects the control inoculations have on substrate and root microbiomes. Here, different types of control and mycorrhizal inoculations were compared with respect to plant growth and nutrition, as well as the structure of root and substrate microbiomes, assessed by next-generation sequencing. We compared uninoculated ("absolute") control to inoculation with blank pot culture lacking arbuscular mycorrhizal fungi, filtrate of that blank inoculum, and filtrate of complex pot-produced mycorrhizal inoculum. Those treatments were compared to a standard mycorrhizal treatment, where the previously sterilized substrate was inoculated with complex pot-produced inoculum containing Rhizophagus irregularis SYM5. Besides this, monoxenically produced inoculum of the same fungus was applied either alone or in combination with blank inoculum. The results indicate that the presence of mycorrhizal fungus always resulted in stimulation of Andropogon gerardii plant biomass as well as in elevated phosphorus content of the plants. The microbial (bacterial and fungal) communities developing in the differently inoculated treatments, however, differed substantially from each other and no control could be obtained comparable with the treatment inoculated with complex mycorrhizal inoculum. Soil microorganisms with significant biological competences that could potentially contribute to the effects of the various inoculants on the plants were detected in roots and in plant cultivation substrate in some of the treatments.


Subject(s)
Microbiota , Mycorrhizae/physiology , Plant Roots/microbiology , Soil Microbiology , Andropogon/microbiology , Bacteria/metabolism , Biomass , High-Throughput Nucleotide Sequencing , Phosphorus/analysis , Symbiosis
16.
Ecol Evol ; 7(12): 4275-4288, 2017 06.
Article in English | MEDLINE | ID: mdl-28649340

ABSTRACT

Ecology of hypogeic mycorrhizal fungi, such as truffles, remains largely unknown, both in terms of their geographical distribution and their environmental niches. Occurrence of true truffles (Tuber spp.) was therefore screened using specific polymerase chain reaction (PCR) assays and subsequent PCR amplicon sequencing in tree roots collected at 322 field sites across the Czech Republic. These sites spanned a wide range of climatic and soil conditions. The sampling was a priori restricted to areas thought to be suitable for Tuber spp. inasmuch as they were characterized by weakly acidic to alkaline soils, warmer climate, and with tree species previously known to host true truffles. Eight operational taxonomic units (OTUs) corresponding to Tuber aestivum, T. borchii, T. foetidum, T. rufum, T. indicum, T. huidongense, T. dryophilum, and T. oligospermum were detected. Among these, T. borchii was the OTU encountered most frequently. It was detected at nearly 19% of the sites. Soil pH was the most important predictor of Tuber spp. distribution. Tuber borchii preferred weakly acidic soils, T. foetidum and T. rufum were most abundant in neutral soils, and T. huidongense was restricted to alkaline soils. Distribution of T. aestivum was mainly dictated by climate, with its range restricted to the warmest sites. Host preferences of the individual Tuber spp. were weak compared to soil and climatic predictors, with the notable exception that T. foetidum appeared to avoid oak trees. Our results open the way to better understanding truffle ecology and, through this new knowledge, also to better-informed trufficulture.

17.
Environ Pollut ; 218: 176-185, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27569718

ABSTRACT

Ectomycorrhizal (ECM) fungi contribute to the survival of host trees on metal-rich soils by reducing the transfer of toxic metals into roots. However, little is known about the ability of ECM fungi to accumulate elements in ectomycorrhizae (ECMs). Here we report Ag, As, Cd, Cl, Cu, Sb, V, and Zn contents in wild-grown Norway spruce ECMs collected in a smelter-polluted area at Lhota near Príbram, Czech Republic. The ECMs data were compared with the element concentrations determined in the corresponding non-mycorrhizal fine roots, soils, and soil extracts. Bioaccumulation factors were calculated to differentiate the element accumulation ability of ECMs inhabited by different mycobionts, which were identified by ITS rDNA sequencing. Among the target elements, the highest contents were observed for Ag, Cl, Cd, and Zn; Imleria badia ECMs showed the highest capability to accumulate these elements. ECMs of Amanita muscaria, but not of other species, accumulated V. The analysis of the proportions of I. badia and A. muscaria mycelia in ECMs by using species-specific quantitative real-time PCR revealed variable extent of the colonization of roots, with median values close to 5% (w/w). Calculated Ag, Cd, Zn and Cl concentrations in the mycelium of I. badia ECMs were 1 680, 1 510, 2 670, and 37,100 mg kg-1 dry weight, respectively, indicating substantial element accumulation capacity of hyphae of this species in ECMs. Our data strengthen the idea of an active role of ECM fungi in soil-fungal-plant interactions in polluted environments.


Subject(s)
Chlorine/metabolism , Metalloids/metabolism , Metals, Heavy/metabolism , Mycorrhizae/metabolism , Soil Pollutants/metabolism , Czech Republic , Mycelium/metabolism , Plant Roots/metabolism
18.
Fungal Biol ; 120(3): 358-69, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26895864

ABSTRACT

Mechanisms evolved in eukaryotes to handle heavy metals involve cytosolic, metal-binding metallothioneins (MTs). We have previously documented that the sequestration of silver (Ag) in the Ag-hyperaccumulating Amanita strobiliformis is dominated by 34-amino-acid (AA) AsMT1a, 1b, and 1c isoforms. Here we show that in addition to AsMT1a, 1b, and 1c isogenes, the fungus has two other MT genes: AsMT2 encoding a 34-AA AsMT2 similar to MTs known from other species, but unrelated to AsMT1s; AsMT3 coding for a 62-AA AsMT3 that shares substantial identity with as-yet-uncharacterized conserved peptides predicted in agaricomycetes. Transcription of AsMT1s and AsMT3 in the A. strobiliformis mycelium was specifically inducible by treatments with Ag or copper (Cu) and zinc (Zn) or cadmium (Cd), respectively; AsMT2 showed a moderate upregulation in the presence of Cd. Expression of AsMTs in the metal-sensitive Saccharomyces cerevisiae revealed that all AsMTs confer increased Cd tolerance (AsMT3 proved the most effective) and that, unlike AsMT1 and AsMT2, AsMT3 can protect the yeasts against Zn toxicity. The highest level of Cu tolerance was observed with yeasts expressing AsMT1a. Our data indicate that A. strobiliformis can specifically employ different MT genes for functions in the cellular handling of Ag and Cu (AsMT1s) and Zn (AsMT3).


Subject(s)
Amanita/genetics , Amanita/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Silver/metabolism , Copper/metabolism , Drug Tolerance , Gene Expression Profiling , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription, Genetic/drug effects , Zinc/metabolism
19.
Folia Microbiol (Praha) ; 60(4): 365-71, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25934267

ABSTRACT

Intact, growing cells of strongly acidophilic fungi Acidea extrema and Acidothrix acidophila have been successfully transformed by introduction of heterologous DNA fragment (composed of the glyceraldehyde-phosphate-dehydrogenase gene promoter from Emericella nidulans, a metallothionein-coding gene AsMt1 from Amanita strobiliformis and glyceraldehyde-phosphate-dehydrogenase gene terminator from Colletotrichum gloeosporioides) with the length of 1690 bp. The transformation procedure was based on the DNA transfer mediated by Agrobacterium tumefaciens bearing disarmed helper plasmid pMP90 and binary vector pCambia1300 with inserted DNA fragment of interest. The transformants proved to be mitotically stable, and the introduced gene was expressed at least at the level of transcription. Our work confirms that metabolic adaptations of strongly acidophilic fungi do not represent an obstacle for genetic transformation using conventional methods and can be potentially used for production of heterologous proteins. A promising role of the fast growing A. acidophila as active biomass in biotechnological processes is suggested not only by the low susceptibility of the culture grown at low pH to contaminations but also by reduced risk of accidental leaks of genetically modified microorganisms into the environment because highly specialized extremophilic fungi can poorly compete with common microflora under moderate conditions.


Subject(s)
Ascomycota/genetics , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Amanita/genetics , Gene Expression , Genetic Vectors , Hydrogen-Ion Concentration , Metallothionein/genetics , Plasmids , Promoter Regions, Genetic , Transcription Termination, Genetic
20.
Mycorrhiza ; 24(8): 603-10, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24756631

ABSTRACT

Mycorrhizal fungi provide direct and functional interconnection of soil environment with their host plant roots. Colonization of non-host plants have occasionally been described, but its intensity and functional significance in complex plant communities remain generally unknown. Here, the abundance of ectomycorrhizal fungus Tuber aestivum was measured in the roots of host and non-host (non-ectomycorrhizal) plants in a naturally occurring T. aestivum colony using a quantitative PCR approach. The roots of non-host plant species found inside the brûlé area were extensively colonized by T. aestivum mycelium, although the levels were significantly lower than those found in host Carpinus betulus roots. However, fungal biomass concentration in the non-host roots was one to two orders of magnitude higher than that in the surrounding soil. This indicates existence of an important biotic interaction between T. aestivum mycelium and the non-host, mostly herbaceous plants. Roots, either host or non-host, thus probably constitute hot spots of T. aestivum activity in the soil ecosystem with as yet uncovered functional significance.


Subject(s)
Betulaceae/microbiology , Mycorrhizae/physiology , Plant Roots/microbiology , Plants/classification , Plants/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...